教师主页
- 曹广忠
- 曹军
- 柴彦威
- 陈彦光
- 陈耀华
- 陈效逑
- 程和发
- 楚建群
- 戴林琳
- 邓辉
- 董豫赣
- 付晓芳
- 方海
- 方精云
- 冯长春
- 冯健
- 傅伯杰
- 高艳
- 宫彦萍
- 韩茂莉
- 贺灿飞
- 贺金生
- 胡建英
- 华方圆
- 胡燮
- 黄崇
- Kazuo Isobe
- 吉成均
- 贾小新
- 金鑫
- 李宜垠
- 李有利
- 李本纲
- 李喜青
- 李双成
- 林坚
- 刘耕年
- 刘文新
- 刘峻峰
- 刘宇
- 刘鸿雁
- 刘涛
- 刘燕花
- 刘刚
- 刘煜
- 刘雪萍
- 刘茂甸
- 刘萍
- 卢晓霞
- 陆雅海
- 马亮
- 马建民
- 马燕
- 蒙吉军
- 莫多闻
- 蒙冰君
- PHILIPPE CIAIS
- 彭建
- 彭书时
- 朴世龙
- 阙维民
- 宋宛儒
- 沈文权
- 沈泽昊
- 沈国锋
- 宋峰
- 陶胜利
- 唐晓峰
- 唐志尧
- 唐艳鸿
- 陶澍
- 童昕
- 李婷婷
- 王仰麟
- 王红亚
- 王志恒
- 王娓
- 王少鹏
- 王旭辉
- 王学军
- 王喜龙
- 万祎
- 王愔
- 王长松
- 王开存
- 王昀
- 吴必虎
- 吴健生
- 吴龙峰
- 吴林蔚
- 谢建民
- 徐福留
- 许文君
- 姚蒙
- 于佳鑫
- 杨小柳
- 尹燕平
- 阴劼
- 喻航
- 曾辉
- 张家富
- 张照斌
- 赵鹏军
- 赵昕奕
- 郑成洋
- 周力平
- 周丰
- 朱东强
- 朱彪
- 朱晟君
- 朱丹
- 朱江玲
- 张尧
- 张新平
- 张璐瑶
- 赵卡娜
- 汪淼
- 袁文平
- 吴英迪
- 钟奇瑞
- 刘建宝
- 杨卉
- 张一凡
- 李梅
- 杜世宏
- 秦少杰
- 张修远
- 杨晨
- 金哲侬
- 张致杰
- 连旭
刘鸿雁
职称:教授
研究方向:植被生态学与生态遥感,第四纪生态学与全球变化
通讯地址:
Email:lhy@urban.pku.edu.cn
教育经历
1985年9月考入北京大学地理系自然地理专业
1989年获北京大学理学学士学位
1992年获北京大学环境地学专业理学硕士学位
1999年获北京大学自然地理学博士学位
工作经历
1992年开始在北京大学城市与环境学系(环境学院、城市与环境学院)任教,历任助教、讲师、副教授
2004年晋升为教授
2000年10月-2001年3月获中加学术交流计划支持在加拿大卡尔加里大学访问
2005年10月-2008年2月为德国波茨坦气候影响研究所(PIK)洪堡学者
2007年3月-2020年10月担任城市与环境学院副院长
博士生导师/方向
自然地理学(植物地理学、全球变化生态响应)
硕士生导师/方向
生态学(植物生态学)
学术任职
中国生态学会副理事长(2023-)
中国遥感应用协会环境遥感分会理事长(2018-)
中国地理学会生物地理专业委员会主任(2017-)
中国古生物学会孢粉分会副理事长(2022-)
中国第四纪科学研究会理事(2016-)
亚洲树轮学会理事(2015-)
国际景观生态学协会中国分会理事(1996-)
荣誉与奖励
主讲“植物学”课程获国家一流本科课程(2023)
北京市高校教学名师(2022)
北京大学教学卓越奖(2021)
北京市优秀本科毕业论文指导教师奖(2021)
基础学科拔尖学生培养计划2.0优秀教师奖(2021)
国家“万人计划”科技创新领军人才(2020-)
科技部“植被恢复与固碳耗水”创新团队负责人(2020-)
北京市教学成果一等奖(排名第三,2013)
国家杰出青年科学基金资助(2013)
高等学校科学研究优秀成果奖(教育部自然科学奖)二等奖(排名第一,2010)
德国洪堡学者(2005-2008)
第五届第四纪青年科学家奖(2005)
北京大学教学成果一等奖(2004)
第七届全国青年地理科技奖(2003)
教材编撰
植物地理学(高等教育出版社,2020)
野外生态学实习指导(北京大学出版社,2018)
课程教学
当前主讲:
1)本科生专业基础课“植物学(下)(植物分类与植物地理)”
3)全校通选课“中国的生态问题与生态建设”
4)一带一路综合实习(俄罗斯)
参与讲授
本科生专业基础课“生态学基础与应用”(2018-2023)
曾经讲授
本科生专业必修课“野外生态学”(地理专业“植物地理土壤地理实习”,1992-2016)
本科生拔尖人才课程“生态学与地理学前沿”(2013-2022)
本科生专业基础课“植物地理学”(1992-2004)
本科生专业课“应用生态学”(合作讲授,1992-2004)
研究生专业课“生态学研究进展”(2015-2023)
研究生专业课“陆地自然生态系统学”(1992-2014)
研究生专业课“植被生态学”(1996)
柏林自由大学邀请讲授“中国的生态退化与生态恢复”(2007)
在站博士后
漆婧华(2023年进站):塞罕坝不同林龄人工林共生真菌群落多样性
张 泽(2023年进站):半湿润半干旱区森林多重功能稳定性
李佳梅(2023年进站):半湿润半干旱区森林蒸散
祝欣荣(2023年进站):生态干旱指标构建
在读博士研究生
郑宇坤(2019级):东北北部多年冻土区全新世温室气体排放
彭昭宇(2020级):中国高山林线树木生长及环境影响监测
李富富(2021级):干旱影响下的森林冠层结构与截留的关系
潘婉婷(2021级):植物钙镁硅化学计量与植物生产力的稳定性
牛宜然(2022级):干旱影响下的植物冠层水分与光合的关系
桂正扬(2023级):干旱影响下的共生真菌分布格局与机制
在读硕士研究生
彭若男(2021级):树木木质部导管解剖特征反映的干旱胁迫下的水分利用
张晶晶(2022级):樟子松人工林与天然林非结构性碳积累的比较
丁 香(2023级):东北北部多年冻土区土地利用变化对升温的反馈
本科生拔尖人才和本科毕业论文
张可欣(2020级):石笋和树轮氧同位素对于东亚季风的指示意义
傅启玥(2021级):东北北部多年冻土区冻融过程对树木生长的影响监测
魏雨杉(2022级):待定
曹柏玉(2022级):待定
韩佳伟(2022级):待定
毕业生
出站博士后
蒋子涵(2016年-2018年):岩性对喀斯特关键带植被的调控作用
韩 玥(2019年-2021年):内蒙古高原与青藏高原末次冰盛期以来植被覆盖度重建
梁博毅(2019年-2021年博雅博士后):贵州省农作物产量模拟及农业管理措施优化
许重阳(2018年-2021年):干旱化影响下的森林死亡风险与寿命
伍 露(2019年-2022年):内蒙古退化草地恢复潜力与恢复措施效果研究
石 亮(2020年-2022年):多年干旱和热浪影响下的树木生长
曹 静(2020年-2022年):林分因素对树木生长-气候关系的调控作用
王 璐(2020年-2023年):树轮稳定氧同位素反映的树木水分吸收与历史时期土壤水分变化
王秋铭(2020年-2023年):中国北方半湿润半干旱区人工林生长对土壤水的影响研究
宋沼鹏(2021年-2023年博雅博士后):年均降水量梯度下植物生态化学计量特征的干旱适应性研究
硕士研究生
年级 |
姓 名 |
论文题目 |
毕业去向 |
2000 |
田育红 |
内蒙古高原东南部荒漠化与风沙活动研究 |
香港大学博士生 (现北京师范大学资源学院副教授) |
2001 |
邢秋茹 |
广东过渡热带和天山高山林线树轮生长及其与 气候因子的关系 |
《生命世界》编辑部 (现居英国) |
2002 |
纪中奎 |
基于现代植被与表土花粉的新疆玛纳斯河流域 全新世气候变化与植被演化 |
自办环境咨询公司 (现北京21世纪空间技术应用有限公司总经理) |
2003 |
朱江玲 |
半干旱区关键地段全新世植被演化及其对气候 变化的响应 |
北京大学生态研究中心 (高级工程师) |
2004 |
郭允允 |
天山云杉树木生长及生态系统生产力对气候 变化的响应 |
科学出版社 |
2005 |
任佶 |
气候变化与放牧活动对内蒙古草地植被退化影响 的定量研究 |
北京21世纪空间技术应用有限公司 (现自主创业) |
2006 |
何思源 |
干旱极限条件下温带森林对气候变化的敏感性 |
剑桥大学地理系博士研究生 (现中科院地理资源所副研究员) |
2007 |
张语克 |
半干旱草原区湖泊水面面积变化及其干旱的原因 |
九寨沟管理局 (现自然资源部海洋三所任职) |
2008 |
陈曦 |
土地利用对温带草原区土壤有机碳和全氮的影响研究 |
普华永道公司 (美国Wayfair公司) |
2011 |
王韬 |
京津冀暖温带山地灌丛生态地理特征及其影响因子 |
绿洲能源集团公司 |
2013 |
王秋懿 |
中国北方典型草原带近3500年环境变迁 |
中华人民共和国外交部 |
2014 |
邱爽 |
中国温带草原C4植物分布及环境影响机制 |
北京大学附属中学朝阳未来学校 |
2015 |
上官淮亮 |
中国北方干旱林线不同树种非结构性碳水化合物的季节动态及其对干旱的响应 |
湖北省选调公务员 |
2016 |
薛佳鑫 |
亚洲北部冻土区森林稳定性及其与气候变化和冻土动态的关系 |
中直机关 |
2017 |
李昀赟 |
大兴安岭南端兴安落叶松生长及其对气候变化的响应 |
北京市西城区选培公务员 |
2018 |
陈志婷 |
基于深度学习技术的全球植被生长模拟与预测 |
中国绿色发展投资有限公司 |
2019 |
赫文琦 |
干旱影响下树木非结构性碳器官间分配变化与碳饥饿风险 |
北京大学学工干部 |
2020 |
蒋璐冰 |
土壤质地对草原植物抗旱性及群落组成的影响 |
重庆市发改委 |
博士研究生
年级 |
姓 名 |
论文题目 |
毕业去向 |
2000 |
徐丽宏* |
天山典型荒漠-绿洲系统景观格局与过程研究 |
中国林业科学研究院 (副研究员) |
2006 |
印 轶 |
中国半湿润半干旱区全新世森林演化及其驱动因子 |
澳大利亚麦考垂大学博士后 (现美国纽约大学副教授) |
2007 |
吴秀臣 |
东亚旱区树木生长和植被物候对气候变化的响应 |
德国马普生物地球化学研究所博士后 (现北京师范大学资源学院教授) |
2008 |
赵烽君 |
中国温带草原植物空间格局与成因 |
中国人民大学附属中学 |
2009 |
胡国铮 |
典型草原带人工林水分利用与生长过程对干旱的响应及其机制 |
中国农业科学院 (副研究员) |
2010 |
徐晓天 |
养分与水分调控下内蒙古草原的生长与恢复 |
中国林业科学研究院博士后 (现北京农林科学院副研究员) |
2010 |
祁兆寰 |
中国北方代表性林线森林生长及其对气候变化的响应 |
中国人民大学附属中学 |
2011 |
郝 倩 |
中国北方林草交错带主要树种末次冰盛期的分布与冰后期迁移 |
天津大学表层地球科学研究院 (副教授) |
2012 |
许重阳 |
亚洲内陆半干旱区森林死亡及其对气候变化的弹性 |
北京大学(博雅博士后) (现以色列希伯来大学博士后) |
2013 |
郭伟超 |
北半球高纬度植被动态与多年冻土的相互关系 |
美国加州大学默塞德分校(博士后) |
2014 |
韩 玥 |
中国北方林草过渡带末次冰盛期以来植被覆盖度变化及其气候响应 |
北京大学博士后 (现北京大学附属中学) |
2015 |
柳 絮 |
东亚内陆草原带木本/草本覆盖度时空变化与未来趋势 |
住房与城乡建设部城乡规划管理中心 |
2015 |
蒋 鹏* |
全球森林生长对极端干旱和湿润事件的响应 |
中华人民共和国工业与信息化部 |
2016 |
岳永彧 |
欧亚多年冻土区南缘冻土变化对植被动态的影响 |
四川省住建厅直属中心 (现北京师范大学博士后) |
2017 |
戴景钰 |
不同空间尺度下树木适应干旱的构型与水力结构性状 |
美国新墨西哥州立大学博士后 |
2018 |
祝欣荣 |
表土层和岩溶层特征对植被水分利用的影响的影响 |
北京大学(博士后) |
2019 |
齐 洋 |
中国北方半湿润半干旱区森林更新相关性状及其干旱适应特征 | 福建农林大学(副教授) |
2019 |
刘 烽 |
气候变化下冠层含水量与森林生长及生产力稳定性的关系研究 | 中国星网 |
2020 |
封斯文 |
干旱与森林结构差异对人工林与天然林生长稳定性的影响 | 华风集团 |
*合作指导
指导本科毕业论文学生
1993年-2022年,共指导55人的本科毕业论文,其中彭若男(2017级)本科毕业论文获得“北京市高校优秀本科毕业论文奖”。
黄永梅(1991级)的论文“围场-好鲁库生态过渡带植被空间分布格局研究”曾被北大教务部收录为北大环境科学专业本科毕业论文范文
杜泉滢(2003级)科研论文在《生物多样性》发表
王怡(2000级)论文修改后在SCI刊物“Review of Palaeobotany and Palynology”发表
任佶(2001级)论文修改后在SCI刊物“Geophysical Research Letter”发表
韦芳玲(2002级)论文修改后在SCI刊物“Review of Palaeobotany and Palynology”发表
刘果(2008级)论文修改后在SCI刊物“Environmental Research Letters”和"PLOS ONE"发表
冯明敏(2010级)论文修改后在SCI刊物"Palaeogeography, Palaeoclimatology, Palaeoecology"发表
邱爽(2010级)论文修改后在SCI刊物"Journal of Arid Environments"发表
戴景钰(2013级)论文修改后在"Communications Biology"发表
彭昭宇(2016级)论文修改后在"Land Degradation and Development"发表
蒋璐冰(2016级)论文修改后在"Land Degradation and Development"发表
彭若男(2017级)论文修改后在"Global Change Biology"发表
研究目标
基于多时空尺度植被动态、地球关键带多圈层相互作用、植物形态解剖和生态适应性的多维度关联研究,探讨东亚生态脆弱区(干旱半干旱区、喀斯特、多年冻土带南缘)植被动态以及生态脆弱性的机理,为区域生态恢复提供科学支撑。近期侧重以下几个方面的研究:
1)季风气候边缘区过去气候变化与植被的敏感性分析
2)生态脆弱区不同生态系统类型生产力动态的驱动因子分析
3)水分和土壤营养对生态脆弱区天然和人工林生长的限制
4)森林、灌丛和草原植被对气候干旱化的生态适应性机理
5)生态脆弱区植被退化和植被恢复对其生态系统服务的影响
在研项目
1)北方半湿润半干旱区典型森林生态系统对气候变化的响应与适应(国家重点研发项目,2022-2027,负责人)
2)气候季节性差异下半干旱区森林生态水文与固碳的关系(国家自然科学基金中以国际合作项目,2022-2024,负责人)
3)东北北部多年冻土区植被动态对气候变化和人类活动的响应(国家自然科学基金重点项目,2023-2027,负责人)
4)植被恢复与固碳耗水(科技部万人计划领军人才支持,2020-2024,负责人)
5)北方林草交错带国土空间绿化模式(国家林草局委托,2023-2024,负责人)
科研条件
1) 孢粉分析设备
2) 树木年轮分析设备(TSAP)
3) 植被数量生态分析软件
4) 植被遥感分析软件
5) 动态全球植被模型
6)森林和草原固定样地
2023
1. Cao, J., Liu, H.Y., Zhao, B.*, Li , Z.S., Liang, B.Y., Shi, L., Song, Z.P., Wu, L., Wang, Q.M., Cressey, E.L., Zhu, Y.P., Li, S., 2023. Nitrogen addition enhances tree radial growth but weakens its recovery from drought impact in a temperate forest in northern China. Science of the Total Environment, 903: 166884
2. Cheng, Y., Liu, H.Y.*, Wang, H., Hao, Q., Duan, K., Dong, Z. 2023. Contributions of climate, vegetation and soil to the alpine sediment carbon accumulation rate in central China since the Middle Holocene. Boreas, 52: 99-108.
3. Feng, S.W., Liu, H.Y.*, Peng, S.S., Dai, J.Y., Xu, C.Y., Luo, C.F., Shi, L., Luo, M., Niu, Y., Liang, B.Y., Liu, F., 2023. Will drought exacerbate the decline in the sustainability of plantation forests relative to natural forests? Land Degradation and Development, 24: 1067-1079
4. Hao, Q., Han, Y., Liu, H.Y.*, Cheng, Y., 2023. Agricultural development has not necessarily caused forest cover decline in semi-arid northern China over the past 12,000 years. Communications Earth and Environment, 4: 146
5. He, X.Y., Jiang, X., Spracklen, D.V., Holden, J., Liang, E.Y., Liu, H.Y., Xu, C.Y., Du, J.H., Zhu, K., Elsen, P.R., Zeng, Z.Z.*, 2023. Global distribution and climatic controls of natural mountain treelines. Global Change Biology, 29: 7001–7011.
6. Jian, D.N., Niu, G.Y., Ma, Z.G.*, Liu, H.Y., Guan, D.B., Zhou, X., Zhou, J., 2023. Limited driving of elevated CO2 on vegetation greening over global drylands. Environmental Research Letters,18: 104024
7. Li, F.F., Wu, S.H.*, Liu, H.Y.*, Yan, D.H., 2023. Biodiversity loss through cropland displacement for urban expansion in China. Science of the Total Environment, 907: 167988
8. Li, F.R., Gaillard, M.-J.*, Cao, X.-Y., Herzschuh, U., Sugita, S., Ni, J., Zhao Y., An, C.-B., Huang, X.Z., Li, Y., Liu, H.Y., Sun, A.Z., Yao, Y.F., 2023. Gridded pollen-based Holocene regional plant cover in temperate and northern subtropical China suitable for climate modelling. Earth System Science Data, 15, 95–112
9. Li, J.T., Xie Y.Y., Wulan, T.Y., Liu, H.Y., Wang, X.J., Zheng, Y., Qi, Q.G., Gao, Z.X., Shen, Z.H.*, 2023. Drought resilience of Mongolian Scotch pine (Pinus sylvestris var. mongolica) at the southernmost edge of its natural distribution: A comparison of natural forests and plantations. Forest Ecology and Management, 542: 121104,
10. Li, S., Liu, H.Y*, Wang, H.Y., Zheng, Y.K., Pan, W.T., 2023. Trace and rare earth elements as the source and transport indicators of different topsoil end-members in the desert peripheral regions of China. Catena, 231: 107304
11. Li, Y., Zhang, W., Schwalm, C.R., Gentine, P., Smith, W.K., Ciais, P., Kimball, J.S., Gazol, A., Kannenberg, S.A., Chen, A.P., Piao, S.L., Liu, H.Y., Chen, D.L., Wu, X.C., 2023. Widespread spring phenology effects on drought recovery of Northern Hemisphere ecosystems. Nature Climate Change, https://doi.org/10.1038/s41558-022-01584-2
12. Liang, B.Y., Liu, H.Y.*, Wang, S.P., Cressey, E.L., Dahlsjo, C.A.L., Xu, C.Y., Wang, J., Wang, Z., Liu, F., Feng, S.W., Shi, L., Dai, J.Y., Cao, J., Li, F.F., Quine, T.A., 2023. Model bias in calculating factor importance of climate on vegetation growth. Global and Planetary Change, 228, 104209
13. Liu, F., Liu, H.Y.*, Adalibieke, W., Peng, Z.Y., Liang, B.Y., Feng, S.W., Shi, L., Zhu, X.R., 2023. Decline in stability of forest productivity in the tropics as determined by canopy water content. iScience, 26: 107211
14. Liu, H.Y.*, Cheng, Y., Anenkhonov, O.A., Sandanov, D.V., Wang, H.Y., Zhou, M., Wei, J.S., Korolyuk, A. Yu., 2023. Dynamics of the climate-permafrost-vegetation coupling system at its southernmost zone in Eurasia under climate warming. Fundamental Research, https://doi.org/10.1016/j.fmre.2023.06.014
15. Naylor, L.A., Dungaitm J.A.J., Zheng, Y., Buckerfield, S., Green, S.M., Oliver, D.M., Liu, H.Y., Peng, J., Tu, C.L., Zhang, G.L., Zhang, X. Y., Quine, T.A., Waldron, S., Hallett, P.D., 2023. Achieving sustainable Earth futures in the Anthropocene by including local communities in critical zone science. Earth’s Future, 11: e2022EF003448
16. Qi,·Y., Zhang, J.J., Liu, F., Song, Z.P., Liang, B.Y., Liu, H.Y.*, 2023. No single factor can explain the low regeneration of patchy coniferous plantations in northern China. Landscape Ecology, https://doi.org/10.1007/s10980-023-01716-9
17. Shi, L., Liu, H.Y.*, Wang, L., Peng, R.N., He, H.L., Liang, B.Y., 2023. Transitional responses of tree growth to climate warming at the southernmost margin of high latitudinal permafrost distribution. Science of the Total Environment, 908: 168503
18. Song, Z.P., Liu, H.Y.*, Wang, X.M., Shi, L., Wu, L., Cao, J., Dai, J., 2023. Community biomass accumulation benefits from flexible plant nutrient homeostasis after wildfire. Forest Ecology and Management, 535: 120894
19. Song, Z.P., Liu, H.Y.*, Hou, J.H., Liu, Y.H., Li, Y., Shi, L., Cao, J., 2023. Shifting of nutrient limitation dominates the recovery of aboveground net primary productivity of mixed forests in northeastern China after selective logging. Science of the Total Environment, 897: 165378
20. Wang, L., Liu, H.Y.*, Grießinger, J., Chen, D.L., Sun, C.F., Fang, C.X., 2023. Enhanced variability and declining trend of soil moisture since the 1880s on the southeastern Tibetan Plateau. Water Resources Research, 59, e2022WR033953
21. Wang, T.N., Xu, T.R., Xu, C.X., Liu, H.Y., Chen, Z.J., Li, Z.S, Li, X.M., Wu, X.C., 2023. Enhanced growth resistance but no decline in growth resilience under long-term extreme droughts. Global Change Biology, DOI: 10.1111/gcb.17038
22. Wang, X.M., Ge, Q.S., Bryan, B.A., Geng, X., Wang, Z.S., Gao, L., Ye, J.S., Sun, J.M., Lu, H.Y., Chen, S.Q., Su, Y.N., Cai, D.W., Che, H.Z., Cheng, H., Liu, H.Y., Liu, B.L., Dong, Z.H., Cao, S.X., Hua, T., Chen, S.Y, Sun, F.B., Luo, G.P., Wang, Z.T., Hu, S., Xu, D.Y., Chen, M.X., Li, D.F., Liu, F., Xu, X.L., Han, D.M., Zheng, Y., Xiao, F.Y., Li, X.B., Wang, P., Chen, F.H.*, 2023. Unintended consequences of combating desertification in China. Nature Communications, 14: 1139
23. Zhang, X.D., Song, Z.L., Zhang, D.B.,Wu, Y.T., Van Zwieten, L., Sun, S.B., Wang, W.Y., Liu, H.Y., Wang, Y.D., Wang, H.L., 2023. Soil properties and anthropogenic influences control the distribution of soil organic carbon in grasslands of northern China. Land Degradradation and Development, DOI: 10.1002/ldr.4895
24. Zhang, X.L., Liu, H.Y.*, Rademacher, T., 2023. Higher latewood to earlywood ratio increases resistance of radial growth to severe droughts in larch. Science of the Total Environment, in press.
25. Zhang, X.L., Rademacher, T., Liu, H.Y.*, Manzanedo, R.D., 2023. Fading regulation of diurnal temperature ranges on drought-induced growth loss for drought-tolerant tree species. Nature Communications, 14: 6916
2022
1. Cao, J., Liu, H.-Y.*, Zhao, B.*, Peng, R.-N., Liang, B.-Y., Anenkhonov, O., Korolyuk, A., Sandanov, D., 2022. Mixed forest suffered less drought stress than pure forest in southern Siberia. Agricultural and Forest Meteorology, 325:109137
2. Chen, Z.-T., Liu, H.-Y.*, Xu, C.-Y., Wu, X.-C., Liang, B.-Y., Cao, J., Chen, D.-L., 2022. Deep learning projects future warming-induced vegetation growth changes under SSP scenarios. Advances in Climate Change Research, 13: 251e257.
3. Cheng, Y., Han Y., Liu, H.-Y.*, 2022. Relative tree cover does not indicate a lagged Holocene forest response to monsoon rainfall. Nature Communications 13: 6267.
4. Cheng, Y., Liu, H.-Y.*, Han, Y., Hao, Q., 2022. Climate sustained the evolution of a stable postglacial woody cover over the Tibetan Plateau. Global and Planetary Change, 215: 103880.
5. Cheng, Y., Liu, H.-Y.*, Wang, H., Hao, Q., Duan, K.-Q., Dong, Z.-B., 2022. Contributions of climate, vegetation and soil to the alpine sediment carbon accumulation rate in central China since the Middle Holocene. Boreas. https://doi.org/10. 1111/bor.12597.
6. Dai, J.-Y., Lu, S.-R., Qi, Y., Liu, H.-Y.*, 2022. Tree-to-shrub shift benefits the survival of Quercus mongolica Fisch. ex Ledeb. at the xeric timberline. Forests, 13: 244.
7. Feng, S.-W., Liu, H.-Y.*, Peng, S.-S., Dai, J.-Y., Xu, C.-Y., Luo, C.-F., Shi, L., Luo, M.-Y., Niu, Y.-R., Liang, B.-Y., Liu, F., 2022. Will drought exacerbate the decline in the sustainability of plantation forests relative to natural forests? Land Degradation and Development, DOI: 10.1002/ldr.4516
8. Guo, W.-C., Safeeq, M., Liu, H.-Y., Wu, X.-C., Cui, G.T., Ma, Q., Goulden, M.L., Lindeskog, M,. Bales, R.C.*, 2022. Mechanisms Controlling Carbon Sinks in Semi-Arid Mountain Ecosystems. Global Biogeochemical Cycles, 36, e2021GB007186
9. Hao, Q., Liu, H.-Y.*, Cheng, Y., Song, Z.-L., 2022. The LGM refugia of deciduous oak and distribution development since the LGM in China. Science China Earth Sciences, doi: 10.1007/s11430-021-9981-9
10. He, W.-Q., Liu, H.-Y.*, Shi, L., Zhou, M., Qi, Y., Liu, F., Zhu, X.-R., Zhao, P.-W., Xiang, C.-L., Shu, Y., 2022. Climate and soil change nutrient element allocation of Siberian larch in the Mongolian semiarid forest. Agricultural and Forest Meteorology, 315: 108825.
11. Jiang, L.-B., Wu, L., Liu, H.-Y., He, W.-Q., Shi, L., Xu, C.-Y., Xiang, C.-L., 2022. Coarsened soil reduces drought resistance of fibrous-rooted species on degraded steppe. Ecological Indicators, 145: 109644.
12. Li, F.-F., Liu, H.-Y.*, Wu, S.-H.*, Wang, Y.-H., Xu, Z.-C., Yu, P.-T., Yan, D.-H., 2022. A PES framework coupling socioeconomic and ecosystem dynamics from a sustainable development perspective. Journal of Environmental Management, in press.
13. Li, S., Liu, H.-Y., Wang, H.-Y., Feng, S.-W., Yang, X.-Y., Zheng, Y.-K., Zhu, C.-Y., Zhao, W.-J., Zhang, Z.-Y., 2023. A rare record of the early and middle Holocene dust export history of the Mongolian Plateau obtained from a crater lake on its southern boundary. Catena, 222, 106847
14. Liu, H.-Y.*, Xu, C.-Y., Allen, C.D., Hartmann, H., Wei, X., Yakir, D., Wu, X.-C., Yu, P.-T., 2022. Nature-based framework for sustainable afforestation in global drylands under changing climate. Global Change Biology, 28: 2202–2220.
15. Peng, R.-N., Liu, H.-Y.*, Anenkhonov, O., Sandanov, D., Korolyuk, A., Shi, L., Xu, C.-Y., Dai, J.-Y., Wang, L., 2022. Tree growth is connected with distribution and warming-induced degradation of permafrost in southern Siberia. Global Change Biology, 28: 5243–5253.
16. Qi, Y., Liu, H.-Y.*, He, W.-Q., Dai, J.-Y., Shi, L., Song, Z.P., 2022. Carbon Allocation of Quercus mongolica Fisch. ex Ledeb. across Different Life Stages Differed by Tree and Shrub Growth Forms at the Driest Site of Its Distribution. Forests, 13, 1745.
17. Qiu, S.-J., Peng, J.*, Quine, T.A., Green, S.M., Liu, H.-Y., Liu, Y.-X., Hartley, I.P., Meersmans, J., 2022. Unveiling trade-offs among reforestation, urbanization and food security in the South China Karst region: How can a hinterland province achieve SDGs? Earth's Future, 10, e2022EF002867.
18. Song, Z.-L.*, Wu, Y.-T., Yang, Y.-H., Zhang, X.-D., Van Zwieten, L. Bolan, N., Li, Z.-M., Liu, H.-Y., Hao, Q., Yu, C.-X., Sun, X.-L., Song, A.-L., Wang, W.-Y., Liu, C.-Q., Wang, H.-L., 2022. High potential of stable carbon sequestration in phytoliths of China's grasslands. Global Change Biology, 28:2736–2750.
19. Wang, L., Liu, H.-Y.*, Chen, D., Zhang, P., Leavitt, S., Liu, Y., Fang, C.-X., Sun, C.-F., Cai, Q.-F., Gui, Z.-Y., Liang, B.-Y., Shi, L., Liu, F., Zheng Y.-K., Grießinger, J., 2022. The 1820s marks a shift to hotter-drier summers in western Europe since 1360. Geophysical Research Letters, 49, e2022GL099692.
20. Wu, L.#, Jiang, L.-B.#, Liu, H.-Y.*, Song, Z.-P., Jiang, L.-B., 2022. Ontogenetic trait variability and nitrogen stoichiometric homeostasis explained high stability of Artemisia frigida-dominated grassland. Ecological Indicators, 145: 109635.
21. Xu, C.-Y., Liu, H.-Y.*, Anenkhonov, O., Sandanov, D., Korolyuk, A., Wu, X.-C., Shi, L., Zhou, M., Zhao, P.-W., 2022. Increased drought frequency causes the extra-compensation of climate wetness on tree growth to fade across inner Asia. Agricultural and Forest Meteorology, 315: 108829.
22. Wu, X.-C.*, Liu, H.-Y., Hartmann, H., Ciais, P., Kimball, J. S., Schwalm, C. R., Camarero, J.J., Chen, A.-P., Centine, P., Yang, Y.-T., Zhang, S.-L., Li, X.-Y., Xu, C.-Y., Zhang, W., Li, Z.-S., Chen, D.-L., 2022. Timing and order of extreme drought and wetness determine bioclimatic sensitivity of tree growth. Earth's Future, 10, e2021EF002530.
23. Xia, S.-P., Song, Z.-L.*, van Zweiten, L., Guo, L.-D., Yu, C.-X., Wang, W.-Q., Li, Q., Hartley, I.P., Yang, Y.-H., Liu, H.-Y., Wang, Y.-D., Ran, X.-B., Liu, C.-Q., Wang, H.-L., 2022. Storage, patterns and influencing factors for soil organic carbon in coastal wetlands of China. Global Change Biology, 28(20): 6065-6085.
24. Zhao, W.-J., Wang, H.-Y.*, Zhang, Z.-Y., Feng, S.-W., Zheng, Y.-K., Li, S., Luo, Y., Liu, H.-Y., 2022. Discrimination of soil magnetism enhanced by land use and its implications for inferring alterations in sediment sources and soil erosion in a homogeneous watershed: An example from the Guizhou Plateau, SW China. Catena, 217: 106476.
25. Zhang, H.-J., Zhou, M., Dong, L.-Z., Liu, H.-Y., Wang, W.*, 2023. Soil bacterial community mediates temporal stability of plant community productivity in degraded grasslands. Applied Soil Ecology 182, 104725.
26. Zheng, Y.-K., Liu, H.-Y.*, Yang, H.*, Wang, H., Zhao, W.-J., Zhang, Z.-Y., Huang, M., Liu, W.-H., 2022. Decoupled Asian monsoon intensity and precipitation during glacial-interglacial transitions on the Chinese Loess Plateau. Nature Communications, 13: 5397.
27. Zhu, X.-R., Liu, H.-Y.*, Xu, C.-Y., Wu, L., Shi, L., Liu, F., 2022. Soil coarsening alleviates precipitation constraint on vegetation growth in global drylands. Environmental Research Letters, 17: 114008.
28. Zhu, X.-R., Liu, H.-Y.*, He, W.-Q., Wu, L., Liu, F., 2022. Regolith water storage patterns determine vegetation productivity in global karst regions. Geoderma, 430, 116292.
29. 郝倩, 刘鸿雁, 程颖, 宋照亮. 2022. 中国落叶栎类末次冰盛期避难所及冰后期分布变化. 中国科学: 地球科学, 52, doi: 10.1360/N072021- 0281.
30. 陈发虎,吴绍洪,刘鸿雁,杨晓燕,刘建宝,2022. 自然地理学学科体系与发展战略要点. 76(9): 2074-2082.
2021
1. Wu, L, Liu, H.-Y.*, Liang, B.-Y., Zhu, X.-R., Cao, J., Wang, Q.-M., Jiang, L.-B., Cressey, E.L., Quime, T.A., 2021. A process-based model reveals the restoration gap of degraded grasslands in Inner Mongolian steppe. Science of the Total Environment, doi:10.1016/j.scitotenv.2021.151324
2. Shi, L., Liu, H.-Y.*, Xu, C.-Y., Liang, B.-Y., Cao, J., Cressey, E.L., Quine, T.A., Zhou, M., Zhao, P.-W., 2021. Decoupled heatwave-tree growth in large forest patches of Larix sibirica in northern Mongolian Plateau. Agricultural and Forest Meteorology, 311: 108667
3. Xu, C.-Y., Liu, H.-Y.*, 2021. Hydraulic adaptability promotes tree life spans under climate dryness. Global Ecology and Biogeography, 31: 51-61
4. Peng, Z.-Y., Liu, H.-Y.*, Jiang, L.-B., Liu, X., Dai, J.-Y., Xu, C.-Y., Chen, Z.-T., Wu. L., Liu, F., Liang, B.-Y., 2021. Effect paths of environmental factors and community attributes on aboveground net primary productivity of a temperate grassland. Land Degradation and Development, 32: 3823-3832.
5. Jiang, L.-B., Liu, H.-Y. *, Peng, Z.-Y., Dai, J.-Y., Zhao, F.,-J., Chen, Z.-T., 2021. Root system plays an important role in responses of plant to drought in the steppe of China. Land Degradation and Development, 32: 3498-3506
6. Liu, X., Feng, S.-W., Liu, H.-Y*, Jue, J., 2021. Patterns and determinants of woody encroachment in the eastern Eurasian steppe. Land Degradation and Development, 32: 3536-3549
7. Cheng, Y., Liu, H.-Y. *, Wang, H.-Y., Chen, D.-L., Ciais, P., Luo, Y., Wu, X-C., Yin, Y.. 2021. Indication of paleoecological evidence on the evolution of alpine vegetation productivity and soil erosion in central China since the mid-Holocene. Science China Earth Sciences, 64, doi: 10.1007/s11430-020-9757-1
8. Wang, L., Liu, H.-Y. *, Leavitt, S., Cressey, E.L., Quine, T.A., Shi, J.-F., Shi, S.-Y., 2021. Tree-ring δ18O identifies similarity in timing but differences in depth of soil water uptake by trees in mesic and arid climates. Agricultural and Forest Meteorology, 308-309: 108569
9. Cao, J., Liu, H.-Y. *, Zhao, B., Li, Z.-S., Liang, B.-Y., Shi, L., Wu, L., Cressey, E.L., Quine, T.A., 2021. High forest stand density exacerbates growth decline of conifers driven by warming but not broad-leaved trees in temperate mixed forest in northeast Asia. Science of the Total Environment, 795: 148875
10. Hao, Q., Yang, S.-L., Song, Z.-L.*, Ran, X.-B., Yu, C.-X., Chen, C.-M., van Zwieten, L., Quine, T.A., Liu, H.-Y., Wang, Z.-G., Wang, H.-L., 2021. Holocene carbon accumulation in lakes of the current east Asian monsoonal margin: Implications under a changing climate. Science of the Total Environment, 737: 138723
11. Liu, F., Liu, H.-Y. *, Xu, C.-Y., Shi, L., Zhu, X.-R., Qi, Y., He, W.-Q., 2021. Old-growth forests show low canopy resilience to droughts at the southern edge of the taiga. Global Change Biology, 27: 2392-2402
12. Liu, H.-Y. *, 2021. Carbon–Water Relationships of the Forest Ecosystem under a Changing Climate. Forests, 12: 563.
13. Chen, Z.-T., Liu, H.-Y. *, Xu, C.-Y., Wu, X.-C., Liang, B.-Y., Cao, J., Chen, D.-L., 2021. Modeling vegetation greenness and its climate sensitivity with deep-learning technology. Ecology and Evolution, doi: 10.1002/ece3.7564
14. Liang, B.-Y., Quine, T.A., Liu, H.-Y. *, Cressey, E.L., Bateman, I., 2021. How can we realize sustainable development goals in rocky desertified regions by enhancing crop yield with reduction of environmental risks? Remote Sensing, 13: 1614
15. Zhu, C.-Y., Wang, H.-Y.*, Li, S., Luo, Y., Xue, T.Y., Song, Y.Q., Qiu, A.A., Liu, H.-Y., 2021. Mineral magnetism variables as potential indicators of permafrost aggradation and degradation at the southern edge of the permafrost zone, Northeast China. Boreas, doi:10.1111/bor.12496
16. Liu, F., Liu, H.-Y. *, Xu, C.-Y., Zhu, X.-R., He, W.-Q., Qi, Y., 2021. Remotely sensed birch forest resilience against climate change in the northern China forest-steppe ecotone. Ecological Indicators, 125: 107526
17. Peng, J.,* Jiang, H., Liu, Q.-H., Green, S.M., Quine, T.A., Liu, H.-Y., Qiu, S.-J., Liu, Y.-X., Meersmans, J., 2021. Human activity vs. climate change: Distinguishing dominant drivers on LAI dynamics in karst region of southwest China. Science of the Total Environment, 769: 146297
18. Zhu, X.-R., Liu, H.-Y. *, Li, Y.-Y., Liang, B.-Y., 2021. Quantifying the role of soil in local precipitation redistribution to vegetation growth. Ecological Indicators, 124: 107355
19. Li, Y.-Y., Liu, H.-Y. *, Zhu, X.-R., Yue, Y.-Y., Xue, J.-X., Shi, L., 2021. How permafrost degradation threatens boreal forest growth on its southern margin? Science of the Total Environment, 762: 143-154
20. 程颖, 刘鸿雁*, 王红亚, 陈德亮, Philippe Ciais, 罗耀, 吴秀,印轶,2021. 中全新世以来中国中部高山植被生产力和土壤侵蚀演变的古生态学证据中国科学: 地球科学; doi: 10.1360/N072020-0284
21. 李昀赟, 刘鸿雁, 2021. 中国东北多年冻土区植被生长对气候变化的响应. 北京大学学报自然科学版, 57(4): 783-789
2020
1. Jiang, Z.-H., Liu, H.-Y., Wang, H.-Y., Peng, J., Meersmans, H., Green, S.M., Quine, T.A., Wu, X.-C., Song, Z.-L., 2021. Bedrock geochemistry influences vegetation growth by regulating the regolith water holding capacity. Nature Communications, 11: 2392
2. Zhu, C.-Y., Liu, H.-Y.*, Wang, H.-Y., Feng, S.-W., Han, Y. 2020. Vegetation change at the southern boreal forest margin in Northeast China over the last millennium: The role of permafrost dynamics. Palaeogeography, Palaeoclimatology, Palaeoecology, 558: 109959.
3. Cheng, Y., Liu, H.-Y.*, Wang, H.-Y., Hao, Q., Han, Y., Duan, K.-Q., Dong, Z.-B. 2020. Climate-Driven Holocene Migration of Forest-Steppe Ecotone in the Tien Mountains. Forests, 2020, 11: 1139.
4. Dai, J.-Y., Liu, H.-Y.*, Wang, Y.-C., Guo, Q.-H., Hu, T.-Y., Quine, T.A., Green, S.M., Hartmann, H., Xu, C.-Y., Liu, X., Jiang, Z.-H., 2020. Drought-modulated allometric patterns of trees in semi-arid forests. Communication Biology, 3: 405.
5. Han, Y., Liu, H.-Y.*, Zhou, L.-Y., Hao, Q., Cheng, Y. 2020. Postglacial evolution of forest and grassland in southeastern Gobi (Northern China). Quaternary Science Reviews, 248: 106611.
6. Cheng, Y., Liu, H.-Y.*, Dong, Z.-B., Duan, K.-Q., Wang, H.-Y., Han, Y. 2020. East Asian summer monsoon and topography co-determine the Holocene migration of forest-steppe ecotone in northern China. Global and Planetary Change, 187: 103135.
7. Dai, J., Liu, H.-Y.*, Xu, C.-Y., Qi, Y., Zhu, X.-R., Zhou, M., Liu, B.-B., Wu, Y.-H., 2020. Divergent hydraulic strategies explain the interspecific associations of co-occurring trees in forest–steppe ecotone. Forests, 11: 942.
8. He, W.-Q., Liu, H.-Y.*, Qi, Y., Liu, F., Zhu, X.-R., 2020. Patterns in nonstructural carbohydrate contents at the tree organ level in response to drought duration. Global Change Biology, 26: 3627-3638.
9. Liu, H.-Y.*, Peng, J., 2020. Determinants of ecosystem processes and services in the karst critical zone in south-west China. Progress in Physical Geography, DOI: 10.1177/0309133320977783
10. Zhu, X.-R., Liu, H.-Y.*, Wu, L., Liang, B.-Y., Liu, F., He, W.-Q., 2020. Impact of bedrock geochemistry on vegetation productivity depends on climate dryness in the Guizhou karst of China. Progress in Physical Geography, DOI: 10.1177/0309133320936085
11. Liang, B.-Y., Liu, H.-Y., Quine, T.A., Chen, X.-Q., Hallett, P.D., Cressey, E.L., Zhu, X.-R., Cao, J., Yang, S.-H., Wu, L., Hartley, I.P., 2020. Analysing and simulating spatial patterns of crop yield in Guizhou Province based on artificial neural networks. Progress in Physical Geography, DOI: 10.1177/0309133320956631
12. Feng, S.-W., Wu, L., Liang, B.-Y., Wang, H.-Y., Liu, H.-Y.*, Zhu, C.-Y., Li, S., 2020. Forestation does not necessarily reduce soil erosion in a karst watershed in southwestern China. Progress in Physical Geography, DOI: 10.1177/0309133320958613
13. Liu, H.-Y.*, Dai, J.-Y., Xu, C.-Y., Peng, J., Wu, X.-C., 2020. Bedrock-associated belowground and aboveground interactions and their implications for vegetation restoration in the karst critical zone of subtropical Southwest China. Progress in Physical Geography, DOI: 10.1177/0309133320949865
14. Qiu, S.-J., Peng, J.*, Dong, J.-Q., Wang, X.-Y., Ding, Z.-H., Zhang, H.-B., Mao, Q., Liu, H.-Y., Quine, T.A., 2020. Understanding the relationships between ecosystem services and associated social-ecological drivers in a karst region: A case study of Guizhou Province, China. Progress in Physical Geography, DOI: 10.1177/0309133320933525
15. Shi, L., Li, G.-X., Liu, H.-Y.,*, Dech, J.P., Zhou, M., Zhao, P.-W., Ren, Z., 2020. Dendrochronological Reconstruction of June Drought (PDSI) from 1731–2016 for the Western Mongolian Plateau. Atmosphere, 11: 839
16. Hao, Q., Yang, S.-L., Song, Z.-L.*, Ran, X.-B., Yu, C.-X., Chen, C.-M., Van Zwieten, L., Quine, T.A., Liu, H.-Y., Wang, Z.-G., Wang, H.-L., 2020. Holocene carbon accumulation in lakes of the current east Asian monsoonal margin: Implications under a changing climate. Science of the Total Environment, 737: 139-423
17. Anenkhonov, O.A.*, Sandanov, D.V., Liu, H.-Y., Korolyuk, A. Yu., Xu, C.-Y., Guo, W.-C., Zverev, A.A., Naidanov, B.B., Chimitov, D.G., 2020. Using Data on the Thermal Conditions of Soils for the Differentiation of Vegetation in the Exposure-Related Forest Steppe of Transbaikalia. Contemporary Problems of Ecology, 13(5): 522–532
18. Peng, J.*, Tian, L., Zhang, Z.-M., Zhao, Y., Green, S.M., Quine, T.A., Liu, H.-Y., Meersmans, J., 2020. Distinguishing the impacts of land use and climate change on ecosystem services in a karst landscape in China. Ecosystem Services, 46: 101199
19. Liang, B.-Y., Liu, H.-Y.*, Chen, X.-Q., Zhu, X.-R., Cressey, E.L., Quine, T.A., 2020. Periodic Relations between Terrestrial Vegetation and Climate Factors across the Globe. Remote Sensing, 12:1805
20. Yue, Y.Y., Liu, H.-Y.*, Xue, J.X., Li, Y.Y., Guo, W.-C., 2020. Ecological indicators of near-surface permafrost habitat at the southern margin of the boreal forest in China. Ecological Indicator, 108: 105714
21. Xu, K.-X., Su, Y.-J., Liu J., Hu, T.-Y., Jin, S.-C., Ma, Q., Zhai, Q.-P., Wang, R., Zhang, J., Li, Y.-M., Liu, H.-Y., Guo, Q.-H.*, 2020. Estimation of degraded grassland aboveground biomass using machine learning methods from terrestrial laser scanning data. Ecological Indicators, 108: 105747
22. 薛佳鑫, 刘鸿雁*, 许重阳, Anenkhonov, O.A., Sandanov, D.V., Korolyuk, A. Yu., Balsanova, L.D., Naidanov, B.B., 2020. 西伯利亚南部林草交错带森林生长及环境适应性的指示意义. 北京大学学报(自然科学版), 56(3): 531-538
2019
1. Wu, X.-C., Guo, W.-C., Liu, H.-Y., Li, X.-Y.*, Peng, C.-H., Allen, C.D., Zhang, C.-C., Wang, P., Pei, T.-T., Ma, Y.-J., Tian, Y.-H., Song, Z.-L., Zhu, W.-Q., Wang, Y., Li, Z.-S., Chen, D.-L., 2019. Exposures to temperature beyond threshold disproportionately reduce vegetation growth in the northern hemisphere. National Science Review, DOI: 10.1093/nsr/nwy158
2. Hao, Q., Liu, H.-Y.*, Yang, S.-L., Yang, W.-H., Song, Z.-L.*., 2020. Differentiated roles of mean climate and climate stability on post-glacial birch distributions in northern China. Holocene, 29(11): 1758-1766
3. Roger, P.-C.*, Brandley, P.D., Sebesta, J., Albrechtsen, B.R., Li, Q.-Q., Ivanova, N., Kusbach, A., Kuuluvainen, T., Landhaeuser, S.M., Liu, H.-Y., Myking, T., Pulkkinen, P., Wen, Z., Kulkowski, D., 2020. A global view of aspen: Conservation science for widespread keystone systems. Global Ecology and Conservation, 21, e00828
4. Jiang, P., Liu, H.-Y.*, Piao, S.-L., Ciais, P., Wu X.-C., Yin, Y., Wang, H., 2019. Enhanced growth after extreme wetness compensates for post-drought carbon loss in dry forests. Nature Communications, 10:195
5. Guo, Y.-P., Schöb, C., Ma, W.-H., Mohammat, A., Liu, H.-Y., Yu, S.-L., Jiang, Y.-X., Schmid, B., Tang, Z.-Y.*, 2019. Increasing water availability and facilitation weaken biodiversity–biomass relationships in shrublands. Ecology, e02624
6. Liu, H.-Y.*, Jiang, Z.-H., Dai, J.-Y., Wu, X.-C., Peng, J., Wang, H.-Y., Meersmans, J., Green, S.M., Quine, T.A., 2019. Rock crevices determine woody and herbaceous plant cover in the karst critical zone. Science China Earth Sciences, 62: doi: 10.1007/s11430-018-9328-3
7. Liu, H.-Y.*, Shangguan, H.-L., Zhou, M., Airebule, P., Zhao, P.-W., He, W.-Q., Xiang, C.-L., Wu, X.-C., 2019. Differentiated responses of nonstructural carbohydrate allocation to climatic dryness and drought events in the Inner Asian arid timberline. Agricultural and Forest Meteorology, 271: 355-361
8. Liu, H.-Y., Leng, S.-Y.*, He, C.-F., Peng, J., Wang, X.-J., 2019. China’s road towards sustainable development: Geography bridges science and solution. Progress in Physical Geography, doi: 10.1177/0309133319851026
9. Cao, J., Liu, H.-Y., Zhao, B., Li, Z.-S., Drew, D.M., Zhao, X.-H.*, 2019. Species-specific and elevation-differentiated responses of tree growth to rapid warming in a mixed forest lead to a continuous growth enhancement in semi-humid Northeast Asia. Forest Ecology and Management, 448: 76-84
10. Liu H.-Y., 2019. It is difficult for China’s greening through large-scale afforestation to cross the Hu Line. Science China Earth Sciences, 62: doi: 10.1007/s11430-019-9381-3
11. Shi, L., Dech, J.P., Liu, H.-Y., Zhao, P.-W., Bayin, D., Zhou, M.*, 2019. Post-fire vegetation recovery at forest sites is affected by permafrost degradation in the Da Xing'an Mountains of northern China. Journal of Vegetation Science, 30: 940-949
12. Wang, H.-Y.*, Cheng, Y., Luo, Y., Zhang, C.-N., Deng, L., Yang, X.-Y., Liu, H.-Y., 2019. Variations in erosion intensity and soil maturity as revealed by mineral magnetism of sediments from an alpine lake in monsoon-dominated central east China and their implications for environmental changes over the past 5500 years. The Holocene, doi: 10.1177/095968361986558
13. Green, S.M., Dungaita, J.A.J., Tu, C.-L., Buss, H.L., Sanderson, N., Kawkese, S.J., Xing, K.-X., Yue, F.-J., Hussey, V.L., Peng, J., Johnes, P., Barrowsa, T., Hartley, I.P., Song, X.-W., Jiang, Z.-H., Meersmans, J., Zhang, X.-Y., Tian, J., Wu, X.-C., Liu, H.-Y., Song, Z.-L., Evershed, R., Gao, Y., Quine, T.A.*, 2019. Soil functions and ecosystem services research in the Chinese karst Critical Zone. Chemical Geology, doi: 10.1016/j.chemgeo.2019.03.018
14. Ji, Z.M., Yang, X., Song, Z.-L.*, Liu, H.-Y., Liu, X., Qiu, S., Li, J., Guo, F., Wu, Y., Zhang, X., 2018. Silicon distribution in meadow steppe and typical steppe of northern China and its implications for phytolith carbon sequestration. Grass and Forage Science, 73:482–492
15. Wu, X.-C., Li, X.-Y., Liu, H.-Y.*, Ciais, P., Li, Y.-Q., Xu, C.-Y., Babst, F., Guo, W., Hao, B., Wang, P., Huang, Y.-M., Liu, S.-M., Tian, Y.-H., He, B., Zhang, C.-C., 2019. Uneven winter snow influence on tree growth across temperate China. Global Change Biology, 25: 144-154
2018
1. Guo, W.-C., Liu, H.-Y.*, Wu, X.-C., 2018. Vegetation greening despite weakening coupling between vegetation growth and temperature over the boreal region. Geophysical Research Letters, 123(8), 2376-2387
2. Zeng, W.-J., Chen, J.-B., Liu, H.-Y., Wang, W.*, 2018. Soil respiration and its autotrophic and heterotrophic components in response to nitrogen addition among different degraded temperate grasslands. Soil Biology and Biochemistry, 124: 255-265
3. Shi, F.-Z., Wu, X-C.*, Li, X.-Y.*, Chen, D.-L., Liu, H.-Y., Liu, S.-M., Hu, X., He, B., Shi, C.-M., Wang P., Mao, R., Ma, Y.-J., Huang, Y.-M., 2018. Weakening relationship between vegetation growth over the Tibetan Plateau and large-scale climate variability. Journal of Geophysical Research: Biogeosciences, 123, 004134
4. Jiang, Z.-H., Ma, K.-M., Liu, H.-Y., Tang, Z.-Y., 2018. A trait-based approach reveals the importance of biotic filter for elevational herb richness pattern. Journal of Biogeography, 45: 2288-2298
5. Cheng, Y., Liu, H.-Y.*, Wang, H.-Y., Hao, Q., 2018. Differentiated climate-driven Holocene biome migration in western and eastern China as mediated by topography. Earth Science Reviews, 182: 174-185
6. Hu, G.-Z., Liu, H.-Y.*, Shangguang, H.-L., Wu, X.-C., Xu, X.-T., Williams, M., 2018. The role of heartwood water storage for semi-arid trees under drought. Agricultural and Forest Meteorology, 256-257: 534-541
7. Erdős, L., Ambarlı, D., Anenkhonov, O.A., Bátori, Z., Cserhalmi, D., Kröel-Dulay, G., Liu, H.-Y., Magnes, M., Molnár, Z., Naqinezhad, A., Semenishchenkov, Y.A., Tölgyesi, C., Török, P. 2018. The edge of two worlds: A new review and synthesis on Eurasian forest-steppes. Applied Vegetation Science, 21: 345-362
8. Xu, X.-T., Liu, H.-Y.*, Wang, W., Song, Z.-L., 2018. Patterns and determinants of the response of plant biomass to addition of nitrogen in semi-arid and alpine grasslands of China. Journal of Arid Environments, 153: 11-17
9. Guo, W.-C., Liu, H.-Y.*, Anenkhonov, O.A., Shangguan , H.-L., Sandanov, D.V., Korolyuk, A., Yu, Hu, G.-Z., Wu, X.-C. Vegetation can strongly regulate permafrost degradation at its southern edge through changing surface freeze-thaw processes. Agricultural and Forest Meteorology, 23: 10-17
10. Ru, N., Yang, X.-M., Song, Z.-L.*, Liu, H.-Y., Hao, Q., Liu, X., Wu, X.-C., 2018. Phytoliths and phytolith carbon occlusion in aboveground vegetation of sandy grasslands in eastern Inner Mongolia, China. Science of the Total Environment, 625, 1283-1289
11. Wu, X.-C.*, Liu, H.-Y., Li, X.-Y., Liang, E.-Y., Beck, P.S.A., Huang, Y.-M., Seasonal divergence in the interannual responses of Northern Hemisphere vegetation activity to variations in diurnal climate. Scientific Reports, 6:19000
12. Xu, C.-Y., Liu, H.-Y.*, Zhou, M., Xue, J.-X., Zhao, P.-W., Shi, L., Shangguan, H.-L., 2018. Enhanced sprout-regeneration offsets warming-induced forest mortality through shortening the generation time in semiarid birch forest. Forest Ecology and Management, 409: 298-306
13. Hao, Q., de Lafontaine, G., Guo, D.-S., Gu, H.-Y., Hu, F.-S., Han, Y., Song, Z.-L., Liu, H.-Y.*, 2018. The critical role of local refugia in postglacial colonization of Chinese pine: joint inferences from DNA analyses, pollen records, and species distribution modeling. Ecography, 41: 592-606
14. Cheng, Y., Liu, H.-Y.*, Wang, H.-Y.*, Piao, S.-L., Yin, Y., Ciais, P., Wu, X.-C., Luo, Y., Zhang, C.-N., Song, Y.-Q., Gao, Y.-S., Qiu, A.-A., 2017. Contrasting effects of winter and summer climate on alpine timberline evolution in monsoon-dominated East Asia. Quaternary Science Reviews, 169, 278-287
2017
1. Han, Y., Liu, H.-Y.*, Hao, Q., Liu, X., Guo, W.-C., Shangguan H.-L., 2017. More reliable pollen productivity estimates and relative source area of pollen in a forest-steppe ecotone with improved vegetation survey. The Holocene, 27(10): 1567-1577
2. Liu, X., Liu, H.-Y.*, Qiu, S., Wu, X.-C., Tian, Y.-H., Hao, Q., 2017. An improved estimation of regional fractional woody/herbaceous cover using combined satellite data and high-quality training samples. Remote Sensing, 9, 32
3. Pan, W.-J., Song, Z.-L.*, Liu, H.-Y.*, van Zwieten, L., Li, Y.-T., Yang, X.-M., Han, Y., Liu, X., Zhang, X.-D., Xu, Z.-J., Wang, H.-L., 2017. The accumulation of phytolith-occluded carbon in soils of different grasslands. Journal of Soils and Sediments, 17: 2420-2427
4. Wu, X.-C.*, Liu, H.-Y., Li, X.-Y.*, Ciais, P., Babst, F., Guo, W.-C., Zhang, C.-C., Magliulo, V., Pavelka, M., Liu, S.-M., Huang, Y.-M., Wang, P., Shi, C.-M., Ma, Y.-J., 2018. Differentiating drought legacy effects on vegetation growth over the temperate Northern Hemisphere. Global Change Biology,24(1): 504-516
5. Wu, X.-C., Liu, H.-Y., Li, X.-Y.*, Piao, S.-L., Ciais, P., Guo, W.-C., Yin, Y., Poulter, B., Peng, C.-H., Viovy, N., Vuichard, N., Wang, P., Huang, Y.-M., 2017. Higher temperature variability reduces temperature sensitivity of vegetation growth in Northern Hemisphere. Geophysical Research Letters, 44: 6174-6181
6. Wu, X.-C., Liu, H.-Y., Li, X.-Y.*, Tian, Y.-H., Mahecha, M.D., 2017. Responses of winter wheat yields to warming-mediated vernalization variations across temperate Europe. Frontiers in Ecology and Evolution, 5:126
7. Lashchinskiy, N.*, Korolyuk, A., Makunina, N., Anenkhonov, O., Liu, H.-Y., 2017. Longitudinal changes in species composition of forests and grasslands across the North Asian forest steppe zone. Folia Geobotanica, 52:175–197
8. Xu, C.-Y., Liu, H.-Y.*, Anenkhonov, O.A., Korolyuk, A.Y, Sandanov, D.V., Balsanova, L.D., Naidanov, B.B., Wu, X.-C., 2017. Long-term forest resilience to climate change indicated by mortality, regeneration and growth in semi-arid southern Siberia. Global Change Biology, 23(6):2370-2382
2016
1. Wang, H.-Y.*, Song, Y.-Q., Cheng Y., Luo, Y., Zhang, C.-N., Gao, Y.-S., Qiu, A.-A., Deng, L., Liu, H.-Y., 2016. Mineral magnetism and other characteristics of sediments from a sub-alpine lake (3080m a.s.l.) in central east China and their implications on environmental changes for the last 5770 years. Earth and Planetary Science Letters, 452: 44-59
2. Jiang, P., Liu, H.-Y.*, Wu, X.-C., Wang, H.-Y., 2016. Tree-ring-based SPEI reconstruction in central Tianshan Mountains of China since AD 1820 and links to westerly circulation. Journal of Climatology, doi: 10.1002/joc4884
3. Xu, C.-Y., Liu, H.-Y.*, Williams, A.P., Yin, Y., Wu, X.-C., 2016. Trends toward an earlier peak of the growing season in Northern Hemisphere mid-latitudes. Global Change Biology, 22: 2852-2860
4. Xu, Y., Shen, Z.-H.*, Ying, L.-X., Ciais, P., Liu, H.-Y., Piao, S.-L., Wen, C., Kiang, Y.-X., 2016. The exposure, sensitivity and vulnerability of natural vegetation in China to climate thermal variability (1901-2013): An indicator-based approach. Ecological Indicators, 63: 258-272
5. Yang, X., Chi, X.-L., Ji, C.-J., Liu, H.-Y., Ma, W.-H., Mohhammat, A., Shi,, Z., 2016. Variations of leaf N and P concentrations in shrubland biomes across northern China: phylogeny, climate, and soil. Biogeoscience, 13: 1-10
6. Li, B.-G. Gasser, T., Ciais, P., Piao, S.-L., Tao, S., Balkanski, Y., Hauglustaine, D., Boisier, J.-P., Chen, Z., Huang, M.-T., Li, L.-Z., Li, Y., Liu, H.-Y., Liu, J.,-F., Peng, S.-S., Shen, Z.-H., Sun, Z.-Z., Wang, R., Wang, T., Yin, G.-D., Yin, Y., Zeng, H., Zeng, Z.-Z., Zhou, F., 2016. The contribution of China’s emissions to global climate forcing. Nature, 531: 357-362
7. Qiu, S., Liu, H.-Y.*, Zhao, F.-J., Liu, X., 2016. Inconsistent changes of biomass and species richness along a precipitation gradient in temperate steppe. Journal of Arid Environments, 132: 42-48
8. Feng, M.-M., Wang, Q.-Y., Hao, Q., Yin, Y., Song, Z.-L., Wang, H.-Y., Liu, H.-Y.*, 2016. Determinants of soil erosion during the last 1600 years in the forest–steppe ecotone in Northern China reconstructed from lacustrine sediments. Palaeogeography, Palaeoclimatology, Palaeoecology, 449: 79-84
9. Hao, Q., Liu, H.-Y.*, Liu, X., 2016. Pollen-detected altitudinal migration of forests during the Holocene in the mountainous forest–steppe ecotone in northern China. Palaeogeography, Palaeoclimatology, Palaeoecology, 446: 70–77
10. Yin, Y., Liu, H.-Y.*, Hao, Q., 2016. The role of fire in the late Holocene forest decline in semi-arid North China. The Holocene, 26(1): 93-101
11. Wu, X.-C.*, Liu, H.-Y., Li, X.-Y., Liang, E.-Y., Beck, P.S.A., Huang,Y.-M., 2016. Seasonal divergence in the interannual responses of Northern Hemisphere vegetation activity to variations in diurnal climate. Scientific Reports, 6:19000
2015
1. Xu, X.-T., Liu, H.-Y.*, Song, Z.-L., Wang, W., Hu, G.-Z., Qi, Z.-H., 2015. Response of aboveground biomass and diversity to nitrogen addition along a degradation gradient in the Inner Mongolian steppe, China. Scientific Reports, 5:10284
2. Yang, X.-M., Song, Z.-L., Liu, H.-Y., Bolan, N.S., Wang, H.-L., Li, Z.-M., 2015. Plant silicon content in forests of north China and its implications for phytolith carbon sequestration. Ecological Research, 30: 347-355
3. Hu, G.-Z., Liu, H.-Y.*, Yin, Y., Song, Z.-L., 2015. The role of legumes in plant community succession of degraded grasslands in northern China. Land Degradation & Development, 27: 366-372
4. Anenkhonova, O.A., Korolyukb, A. Yu, Sandanov, D.V., Liu, H.-Y., Zverev, A.A., Guo, D.-L., 2015. Soil-moisture conditions indicated by field-layer plants help identifyvulnerable forests in the forest-steppe of semi-arid Southern Siberia. Ecological Indicators, 57: 196-207
5. Liu, H.-Y.*, Brueheide, H., Elward, J., Chytrý, M., 2015. Temperate forests in continental East Asia. Applied Vegetation Science, 18: 3–4
6. Liu, H.-Y.*, Yin, Y., Wang, Q., He, S., 2015. Climatic effects on plant species distribution within the forest steppe ecotone in northern China. Applied Vegetation Science, 18: 43–49
7. Qi, Z.-H., Liu, H.-Y.*, Wu, X.-C., Hao, Q., 2015. Climate-driven speedup of alpine treeline forest growth in the Tianshan Mountains, Northwestern China. Global Change Biology, 21: 816-826
2014
1. Liu, H.-Y.*, Yin, Y., Hao, Q., Liu, G., 2014. Sensitivity of temperate vegetation to Holocene development of East Asian monsoon. Quaternary Science Reviews, 98: 126-134
2. Hao, Q., Liu, H.-Y.*, Yin, Y., Wang, H.-Y., Feng, M.-M., 2014. Varied responses of forest at its distribution margin to Holocene monsoon development in northern China. Palaeogeography, Palaeoclimatology, Palaeoecology, 409: 239-248
3. Yang, X., Tang, Z.-Y.*, Ji, C.-J., Liu, H.-Y., Ma, W.-H., Mohhamot, A., Shi, Z.-Y., Sun, W., Wang, T., Wang, X.-P., Wu, X., Yu, S.-L., Yue, M., Zheng, C.-Y., 2014. Scaling of nitrogen and phosphorus across plant organs in shrubland biomes across Northern China. Scientific Reports, 4: 5448, DOI: 10.1038/srep05448
4. Song, Z.-L.*, Liu, H.-Y.*, Zhao, F.-J., Xu, C.-Y., 2014. Ecological stoichiometry of N:P:Si in China’s grasslands. Plant and Soil, 380: 165-179
5. Wu, X.-C., Liu, H.-Y.*, He, L.-B., Qi, Z.-H., Anenkhonov, O. A., Korolyuk, A. Yu., Yu, Y., Guo, D.-L., 2014. Stand-total tree-ring measurements and forest inventory documented climate-induced forest dynamics in the semi-arid Altai Mountains. Ecological Indicators, 34: 231-241
6. Liu, H.-Y.*, Yin, Y.*, Piao, S.-L., Zhao, F.-J., Engels, M., Ciais, P., 2013. Disappearing lakes in semiarid northernChina: drivers and environmental impact. Environmental Science and Technology, 47: 12107-12114
2013
1. Liu, G., Yin, Y., Liu, H.-Y.*, Hao, Q., 2013. Quantifying regional vegetation cover variability in North China during the Holocene: implications for climate feedback. PLoS ONE, 8: e71681,
2. Song, Z.-L.*, Liu, H.-Y.*, Li, B.-B., Yang, X.-M., 2013. The production of phytolith-occluded carbon in China’s forests: implications to biogeochemical carbon sequestration. Global Change Biology, 19: 2907-2915
3. Liu, H.-Y.*, Williams, A.P., Allen, C.D.*, Guo, D.-L., Wu, X.-C., Anenkhonov, O.A., Liang, E.-Y., Sandanov, D.V., Yin, Y., Qi, Z.-H., Badmaeva, N.K., 2013. Rapid warming accelerates tree growth decline in semi-arid forests of Inner Asia. Global Change Biology, 19: 2500-2510
4. Liu, H.-Y.*, Yin, Y., 2013. Response of forest distribution to past climate change: An insight into future predictions. Chinese Science Bulletin, 58: 4426-4436
5. Liu, H.-Y.*, Liu, K., Wei, F.-L., 2013. Aretemisia pollen-indicated steppe distribution in southern China during the Last Glacial Maximum. Journal of Palaeogeography, 2: 297-305
6. Liu, H.-Y.*, Piao, S.-L., 2013. Drought threatened semi-arid ecosystems in the Inner Asia. Agricultural and Forestry Meteorology, 178-179: 1-2
7. Liu, G, Liu, H.-Y.*, Yin, Y., 2013. Global patterns of NDVI-indicated vegetation extremes and their sensitivity to climate extremes. Environmental Research Letters, 8: 025009
8. Wu, X.-C., Liu, H.-Y.*, Wang, Y.-F., Deng, M.-H., 2013. Prolonged limitation of tree growth due to warmer spring in semi-arid mountain forests of Tianshan, northwest China. Environmental Research Letters, 8: 024016
9. Hu, G.-Z., Liu, H.-Y.*, Anenkhonov, O., Korolyuk, A., Sandanov, D., Guo, D.-L.,2013. Forest buffers soil temperature and postpones soil thaw as indicated by a three-year large-scale soil temperature monitoring in the forest-steppe ecotone in Inner Asia. Global and Planetary Change, 104: 1-6
10. Poulter, B*, Pedersen, N, Liu, H.-Y., Zhu, Z.-C., D’Arrigo R., Ciais, P., Davi, N., Frank, D., Myneni, R., Piao, S.-L., Wang, T. 2013. Recent trends in Inner Asian forest dynamics to temperature and precipitation indicate high sensitivity to climate change. Agriculture and Forest Meteorology, 178-179: 31-45
11. Yin, Y., Liu, H.-Y.*, Liu, G., Hao, Q., Wang, H.-Y., 2013. Vegetation responses to mid-Holocene extreme drought events and subsequent long-term drought on the southeastern Inner Mongolian Plateau, China. Agricultural and Forestry Meteorology, 178-179: 3-9
12. Wu X.-C., Liu, H.-Y.*, 2013. Consistent shifts in spring vegetation green-up date across temperate biomes inChina, 1982–2006. Global Change Biology, 19: 870-880
2012
1. Wu, X.-C., Liu, H.-Y.*, Guo, D.-L., Anenkhonov, O., Badmaeva, N., Sandanov, D., 2012. Growth Decline Linked to Warming-Induced Water Limitation in Hemi-Boreal Forests. PLoS ONE, 7(8): e42619. doi:10.1371/journal. pone.004261
2. Song, Z.-L.*, Liu, H.-Y., Si, Y., Yin, Y., 2012. The Production of Phytoliths in China's Grasslands: Implications to the Biogeochemical Sequestration of Atmospheric CO2. Global Change Biology, 18: 3647-3653
3. Liu, H.-Y.*, He, S.-Y., Anenkhonov, O, Hu, G.-Z., Sandanov, D., Badmaeva, N., 2012. Topography-controlled soil water content and the coexistence of forest and steppe in northern china. Physical Geography, 33: 561-573
4. Zhao, Y.*, Liu, H.-Y., Li, F.-R., Huang, X.-Z., Sun, J.-H., Zhao, W.-W., Herzschuh, U., Tang, Y., 2012. Application and limitations of the Artemisia/Chenopodiaceae pollen ratio in arid and semi-arid China. The Holocene, 22: 1385-1392
5. Wang, H.-Y.*, Liu, H.-Y., Zhao, F.-J., Yin, Y., Zhu, J.-L., Snowball, I., 2012. Early- and mid-Holocene palaeoenvironments as revealed by mineral magnetic, geochemical and palynological data of sediments from Bai Nuur and Ulan Nuur, southeastern inner Mongolia Plateau, China. Quaternary International, 250: 100-118
6. Yin, Y., Liu, H.-Y.*, He, S.-Y., Zhao, F.-J., Zhu, J.-L., Wang, H.-Y., Liu, G., Wu, X.-C., 2011. Patterns of local and regional grain size distribution and their application to Holocene climate reconstruction in semi-arid Inner Mongolia,China. Palaeogeography, Palaeoclimatology, Palaeoecology 307: 168-176
2011 and before
1. Zhao F.-J., Liu, H.-Y.*, Yin, Y., Hu, G.Z., Wu, X.C., 2011. Vegetation succession prevents dry lake beds from becoming dust sources in the semiarid steppe region of China. Earth Surface Processes and Landforms, 36: 864-871
2. Liu, H.-Y.*, Yin, Y., Zhu, J.-L., Zhao, F.-J., Wang, H.-Y., 2010. How did forest respond to Holocene climate drying at the forest-steppe ecotone in northernChina? Quaternary International, 227: 46-52
3. Zhang, Y.-K., Liu, H.-Y.*, 2010. How did climate drying reduce ecosystem carbon storage in the forest–steppe ecotone? A case study in Inner Mongolia, China. Journal of Plant Research, 123: 543-549
4. Wang, H.-Y.*, Liu, H.-Y., Zhu, J.-L., Yin, Y., 2010. Holocene environmental changes as recorded by mineral magnetism of sediments from Anguli-nuur Lake, southeastern Inner Mongolia Plateau, China. Palaeogeography Palaeoclimatology Palaeoecology, 285(1-2): 30-49
5. Wang, H.-Y.*, Liu, H.-Y., Liu, Y.-H., Cui, H.-T., Abrahamsen, N., 2010. Mineral magnetism and other characteristics of sediments from an alpine lake (3,410 m a.s.l.) in central China and implications for late Holocene climate and environment. Journal of Paleolimnology, 43(2): 345-367
6. Herzschuh, U.*, Birks, H.J.B., Ni, J., Zhao, Y., Liu, H.-Y., Liu, X.-Q., Gross, G., 2010. Holocene land-cover changes on the Tibetan Plateau. Holocene, 20 (1): 91-104
7. Li, A., Guo, D.-L.*, Wang, Z.-Q., Liu, H.-Y., 2010. Nitrogen and phosphorus allocation in leaves, twigs, and fine roots across 49 temperate, subtropical and tropical tree species: a hierarchical pattern. Functional Ecology, 24(1): 224-232
8. Piao, S.-L.*, Ciais, P., Lomas, M., Beer, C., Liu, H.-Y., Fang, J.-Y., Friedlingstein, F., Huang, Y., Muraoka, H., Son, Y., Woodward, I., 2010. Contribution of climate change and rising CO2 to terrestrial carbon balance in East Asia: A multimodel analysis. Global and Planetary Change, 75(3-4): 133-142.
9. Piao, S.-L.*, Cias, P., Huang, Y., Shen, Z.-H., Peng, S.-S., Li, J.-S., Zhou, L.-P., Liu, H.-Y., Ma, Y.-C., Ding, Y.-H., Friedlingstein, P., Liu, C.-Z., Tan, K., Yu, Y.-Q., Zhang, T.-Y., Fang, J.-Y., 2010. The impacts of climate change on water resources and agriculture inChina. Nature, 467, 43-51
10. Liu, H.-Y.*, Cui, H.-T., 2009. Patterns of plant biodiversity in the woodland-steppe ecotone in southeastern Inner Mongolia. Contemporary Problems of Ecology, 2(4): 322-329
11. Liang, E.-Y.*, Eckstein, D., Liu, H.-Y., 2009. Assessing the recent grassland greening trend in a long-term context based on tree-ring analysis: A case study in North China Ecological Indicators, 9:1280–1283
12. Wu, X.-C., Liu, H.-Y.*, Ren, J., He, S.-Y., Zhang, Y.-K., 2009.Water-dominated vegetation activity across biomes in mid-latitudinal easternChina. Geophysical Research Letters,36, L04402, doi:10.1029/2008GL036940
13. Liu, H.-Y.*, Ji, Z.-K., Tian, J., 2008. Reconstruction of former halophilous desert vegetation at the present cropland sites using soil conditions analogy. Folia Geobotanica, 43(1): 35-47
14. Liu, H.-Y.*, Wei, F.-L., Liu, K. and Zhu, J.-L., 2008. Determinants of pollen dispersal in the East Asian steppe at different spatial scales. Review of Palaeobotany and Palynology, 149(3-4): 219-228
15. Liu, H.-Y.*, Yin, Y., Ren, J., Tian, Y.-H., Wang, H.-Y., 2008. Climatic and anthropogenic controls of topsoil features in the semi-arid East Asian steppe. Geophysical Research Letters, 35(4): L04401, doi:10.1029/2007GL032980
16. Liang, E.-Y.*, Eckstein, D., Liu, H.-Y., 2008. Climate-growth relationships of relict Pinus tabulaeformis at the northern limit of its natural distribution in northernChina. Journal of Vegetation Science 19: 393-406
17. Liang, E.-Y.*, Shao, X.-M., Liu, H.-Y., Eckstein, D., 2007, Tree-ring based PDSI reconstruction since AD 1842 in the Ortindag sand land, east Inner Mongolia. Chinese Science Bulletin, 52 (19): 2715-2721
18. Ren, J., Liu, H.-Y.*, Yin, Y., He, S.-Y., 2007. Drivers of greening trend across vertically distributed biomes in temperate arid Asia. Geophysical Research Letters, 34: L07707, doi:10.1029/2007GL029435
19. Liu, H.-Y.*, Wang, Y., Tian, Y.-H., 2006. Climatic and anthropogenic controls of surface pollen in East Asian steppes. Review of Palaeobotany and Palynology, 138(3-4): 281-289
20. Xu, L.-H., Liu, H.-Y.*, Chu, X.-Z., Su, K., 2006, Desert vegetation patterns at the northern foot of Tianshan Mountains: The role of soil conditions. Flora, 206(1): 44-50
21. Piao, S.-L.*, Fang, J.-Y., Liu, H.-Y., Zhu, B., 2005. Dynamics of desertification in China over the past two decades from satellite data. Geophysical Research Letter, 32, L06402, doi:10.1029/2004 GL021764
22. Wang, H.-Y.*, Liu, H.-Y., Liu, Y.-H., Cui, H.-T., 2004. Mineral magnetism of lacustrine sediments and Holocene palaeoenvironmental changes in Dali Nor area, southeast Inner Mongolia Plateau,China. Palaeogeography, Palaeoclimatology, Palaeoecology, 208(3-4):173-190
23. Liu, H.-Y.* Xing, Q.-R., Ji, Z.-K., Xu, L.-H., Tian, Y.-H., 2003. An outline of Quaternary development of Fagus forest inChina: palynological and ecological perspectives. Flora, 198(4): 249-259
24. Liu, H.-Y.*, Tian, Y.-H., Ding, D., 2003. Contribution of different land cover types to the material source of dust stormy weather in Beijing. Chinese Science Bulletin, 48(17):1853-1856
25. Liu, H.-Y.*, Xu, L.-H., Cui, H.-T., 2002, Holocene history of desertification along the woodland-steppe border in northernChina. Quaternary Research, 57: 259-270
26. Liu, H.-Y.*, Cui, H.-T., Yu, P.-T., Huang, Y.-M., 2002, The origin of remnant forest stands of Pinus tabulaeformis in southeastern Inner Mongolia,China. Plant Ecology, 158(3): 139-151
27. Liu, H.-Y.*, Cui, H.-T., Tang, Z.-Y., Dai, J.-H., Tang, Y.-X., 2002, Larch timberline and its development in temperateChina. Mountain Research and Development, 22(4): 359-367
28. Liu, H.-Y.*, Xu, L.-H., Cui, H.-T., Chen C.-D., Xu, X.-Y., 2002, Vegetation pattern and conservation strategy of the extremely-arid desert of Anxi region, NW China. Journal of Environmental Sciences, 14(3): 380-387
29. Fang, J.-Y.*, Liu, H.-Y., Piao, S.-L., 2002,Vegetation-climate relationship and its application in vegetation regionalization inChina. Acta Botanica Sinica, 44(9): 1105-1122
30. Liu, H.-Y.*, Xu, L.-H., Tian, Y.-H., Cui, H.-T., 2002, Tempo-spatial variances of Holocene precipitation at the marginal area of the eastern Asia monsoon influences from pollen evidence. Acta Botanica Sinica, 44(7): 864-871
31. Liu, H.-Y.*, Cui, H.-T., Huang, Y.-M., 2001, Detecting Holocene movements of the woodland-steppe ecotone in northernChinausing discriminant analysis. Journal of Quaternary Science, 16(3): 237-244
32. Wang, H.-Y.*, Liu, H.-Y., Cui, H.-T., Abrahamsen, H., 2001, Terminal Pleistocene/Holocene palaeoenvironmental changes revealed by mineral-magnetism measurements of lake sediments for Dali Nor area, southeastern Inner Mongolia Plateau,China. Palaeogeography, Palaeoclimatology, Palaeoecology, 170: 115-132
33. Liu, H.-Y.*, Cui, H.-T., Pott, R., Speier, M., 2000, Vegetation of the woodland-steppe ecotone in southeastern Inner Mongolia,China. Journal of Vegetation Science, 11(4): 525-532
34. Liu, H.-Y.*, Cui, H.-T., Pott, R., Speier, M., 1999, Surface pollen of the woodland-steppe ecotone in southeastern Inner Mongolia,China. Review of Palaeobotany and Palynology, 105(3-4): 237-250
35. Cui, H.-T.*, Liu, H.-Y., Yao, X.-S., 1997, The finding of the paleo-spruce timber in the Hunshandak sandy land and its paleoecological significance. Science inChina(Series D), 40(6): 599-604