教师主页

人才培养

当前位置: 首页 >  教师主页 >  汪哲成 >  人才培养

汪哲成

职称:助理教授,研究员

研究方向:地理空间智能,能源地理,气候韧性

通讯地址:北京大学城市与环境学院大楼

zhecheng@pku.edu.cn

个人简历 人才培养 科学研究 教研成果

汪哲成,北京大学城市与环境学院信息地理系研究员、助理教授、博雅青年学者。2016年本科毕业于清华大学,2023年1月博士毕业于斯坦福大学,获土木与环境工程博士学位与计算机科学博士辅修学位,导师为Ram Rajagopal教授与Arun Majumdar院士。之后继续在斯坦福从事博士后研究(Human-Centered AI Postdoctoral Fellow)。工作形成了“地理空间智能模型研发->地理大数据构建->能源地理知识发现与政策启示”的研究体系,以一作/共同一作/通讯作者在Nature Energy、Joule (2篇)、Nature Communications与AAAI等国际知名期刊与会议上发表多篇论文,部分被选为封面文章。研究成果被MIT Technology Review、The Hill等媒体广泛报道,并被Google、PG&E、Breakthrough Energy等多家公司使用。现担任多个Nature子刊与Cell子刊审稿人。曾获Stanford Interdisciplinary Graduate Fellowship。

更多详情见网站:https://wangzhecheng.github.io 

目前正在寻找志同道合的博士生、博士后与科研助理加入课题组。目前尚有一个2026年秋季入学的博士生名额(申请-考核制博士或硕转博),有意向者请尽快邮件联系。也欢迎计划2027年或之后读博的学生提前联系、进组科研。此外,课题组长期招收博士后(包括支持申请北大博雅博士后)与科研助理。

本人有丰富的指导学生经验,曾指导的学生或在顶尖学校实验室继续开展研究,或进入Waymo、Google X等公司工作。正在寻找志同道合的博士生、博士后与科研助理加入课题组。目前尚有一个2026年秋季入学的博士生名额(申请-考核制博士或硕转博),有意向者请尽快邮件联系。也欢迎计划2027年或之后读博的学生提前联系、进组科研。此外,课题组长期招收博士后(包括支持申请北大博雅博士后)与科研助理。

地理空间智能与信息系统:适用于遥感、街景等地理大数据的多模态基础模型;地理空间推理;基于地理空间智能的信息共享系统与可信数据空间等。

能源地理与气候韧性:利用地理空间智能、计量经济学、能源系统建模等方法,探索“能源-气候-社会”复杂联系及其时空异质性,为因地制宜制定政策提供可解释的参考依据,以加速碳中和进程并提升“基础设施-人类”耦合系统的韧性。

代表性论文

  • Zhecheng Wang, Michael Wara, Arun Majumdar, and Ram Rajagopal (2023). Local and Utility-Wide Cost Allocations for a More Equitable Wildfire-Resilient Distribution Grid. Nature Energy(Featured as cover).

  • Zhecheng Wang, Marie-Louise Arlt, Chad Zanocco, Arun Majumdar, and Ram Rajagopal (2022). DeepSolar++: Understanding Residential Solar Adoption Trajectories with Computer Vision and Technology Diffusion Models. Joule.

  • Jiafan Yu*, Zhecheng Wang*, Arun Majumdar, and Ram Rajagopal (2018). DeepSolar: A Machine Learning Framework to Efficiently Construct a Solar Deployment Database in the United States. Joule(Featured as cover). (* Equal contribution)

  • Zhecheng Wang, Arun Majumdar, and Ram Rajagopal (2023). Geospatial Mapping of Distribution Grid with Machine Learning and Publicly-Accessible Multi-Modal Data. Nature Communications.

  • Zhecheng Wang, Rajanie Prabha*, Tianyuan Huang*, Jiajun Wu, and Ram Rajagopal (2024). SkyScript: A Large and Semantically Diverse Vision-Language Dataset for Remote Sensing. AAAI Conference on Artificial Intelligence. (* Equal contribution)

其它论文

  • Tianyuan Huang, Chad Zanocco, Zhecheng Wang, Jackelyn Hwang, and Ram Rajagopal (2025). Neighborhood Built Environment Disparities are Amplified During Extreme Weather Recovery. Accepted in principle by Nature.

  • Tony Liu, Chad Zanocco, Zhecheng Wang, Tianyuan Huang, June Flora, and Ram Rajagopal (2025). Large Language Model Enabled Knowledge Discovery of Building-Level Electrification Using Permit Data. Energy and Buildings.

  • Rajanie Prabha, Zhecheng Wang, Chad Zanocco, June Flora, and Ram Rajagopal (2025). DeepSolar-3M: An AI-Enabled Solar PV Database Documenting 3 Million Systems Across the US. ICLR Tackling Climate Change with Machine Learning Workshop(Best Paper Award)

  • Moritz Wussow, Chad Zanocco, Zhecheng Wang, Rajanie Prabha, June Flora, Dirk Neumann, Arun Majumdar, and Ram Rajagopal (2024). Exploring the Potential of Non-Residential Solar to Tackle Energy Injustice. Nature Energy.

  • Tianyuan Huang, Timothy Dai, Zhecheng Wang, Hesu Yoon, Hao Sheng, Andrew Ng, Ram Rajagopal, and Jackelyn Hwang (2022). Detecting Neighborhood Gentrification at Scale via Street-level Visual Data. IEEE International Conference on Big Data.

  • Kevin Mayer, Benjamin Rausch, Marie-Louise Arlt, Gunther Gust, Zhecheng Wang, Dirk Neumann, and Ram Rajagopal (2022). 3D-PV-Locator: Large-Scale Detection of Rooftop-Mounted Photovoltaic Systems in 3D. Applied Energy.

  • Tianyuan Huang*, Zhecheng Wang*, Hao Sheng*, Andrew Ng, and Ram Rajagopal (2021). M3G: Learning Urban Neighborhood Representation from Multi-Modal Multi-Graph. ACM SIGKDD Workshop on Deep Learning for Spatiotemporal Data. (* equal contribution).

  • Mingxiang Chen, Qichang Chen, Lei Gao, Yilin Chen, and Zhecheng Wang (2021). Predicting Geographic Information with Neural Cellular Automata. AAAI AI for Urban Mobility Workshop.

  • Kevin Mayer, Zhecheng Wang, Marie-Louise Arlt, Dirk Neumann, and Ram Rajagopal (2020). DeepSolar for Germany: A Deep Learning Framework for PV System Mapping from Aerial Imagery. International Conference on Smart Energy Systems and Technologies (SEST).

  • Zhecheng Wang*, Haoyuan Li*, and Ram Rajagopal (2020). Urban2Vec: Incorporating Street View Imagery and POIs for Multi-Modal Urban Neighborhood Embedding. AAAI Conference on Artificial Intelligence. (* Equal contribution)

  • Qinghu Tang*, Zhecheng Wang*, Arun Majumdar, and Ram Rajagopal (2019). Fine-Grained Distribution Grid Mapping Using Street View Imagery. NeurIPS Tackling Climate Change with Machine Learning Workshop. (* Equal contribution)

  • Zhengcheng Wang*, Zhecheng Wang*, Arun Majumdar, and Ram Rajagopal (2019). Identify Solar Panels in Low Resolution Satellite Imagery with Siamese Architecture and Cross-Correlation. NeurIPS Tackling Climate Change with Machine Learning Workshop. (* Equal contribution)

  • Sharon Zhou, Jeremy Irvin, Zhecheng Wang, Eva Zhang, Jabs Aljubran, Will Deadrick, Ram Rajagopal, and Andrew Ng (2019). DeepWind: Weakly Supervised Localization of Wind Turbines in Satellite Imagery NeurIPS Tackling Climate Change with Machine Learning Workshop.

  • Neel Guha, Zhecheng Wang, and Arun Majumdar (2018). Machine Learning for AC Optimal Power Flow. ICML Climate Change Workshop(Best Paper Award Honorable Mention)