教师主页
- 曹广忠
- 曹军
- 柴彦威
- 陈彦光
- 陈耀华
- 陈效逑
- 程和发
- 楚建群
- 戴林琳
- 邓辉
- 董豫赣
- 付晓芳
- 方海
- 方精云
- 冯长春
- 冯健
- 傅伯杰
- 高艳
- 宫彦萍
- 韩茂莉
- 贺灿飞
- 贺金生
- 胡建英
- 华方圆
- 胡燮
- 黄崇
- Kazuo Isobe
- 吉成均
- 贾小新
- 金鑫
- 李宜垠
- 李有利
- 李本纲
- 李喜青
- 李双成
- 林坚
- 刘耕年
- 刘文新
- 刘峻峰
- 刘宇
- 刘鸿雁
- 刘涛
- 刘燕花
- 刘刚
- 刘煜
- 刘雪萍
- 刘茂甸
- 刘萍
- 卢晓霞
- 陆雅海
- 马亮
- 马建民
- 马燕
- 蒙吉军
- 莫多闻
- 蒙冰君
- PHILIPPE CIAIS
- 彭建
- 彭书时
- 朴世龙
- 阙维民
- 宋宛儒
- 沈文权
- 沈泽昊
- 沈国锋
- 宋峰
- 陶胜利
- 唐晓峰
- 唐志尧
- 唐艳鸿
- 陶澍
- 童昕
- 李婷婷
- 王仰麟
- 王红亚
- 王志恒
- 王娓
- 王少鹏
- 王旭辉
- 王学军
- 王喜龙
- 万祎
- 王愔
- 王长松
- 王开存
- 王昀
- 吴必虎
- 吴健生
- 吴龙峰
- 吴林蔚
- 谢建民
- 徐福留
- 许文君
- 姚蒙
- 于佳鑫
- 杨小柳
- 尹燕平
- 阴劼
- 喻航
- 曾辉
- 张家富
- 张照斌
- 赵鹏军
- 赵昕奕
- 郑成洋
- 周力平
- 周丰
- 朱东强
- 朱彪
- 朱晟君
- 朱丹
- 朱江玲
- 张尧
- 张新平
- 张璐瑶
- 赵卡娜
- 汪淼
- 袁文平
- 吴英迪
- 钟奇瑞
- 刘建宝
- 杨卉
- 张一凡
- 李梅
- 杜世宏
- 秦少杰
- 张修远
- 杨晨
- 金哲侬
- 张致杰
- 连旭
- 汪哲成

汪哲成
职称:助理教授,研究员
研究方向:地理空间智能,能源地理,气候韧性
通讯地址:北京大学城市与环境学院大楼
zhecheng@pku.edu.cn
汪哲成,北京大学城市与环境学院信息地理系研究员、助理教授、博雅青年学者。2016年本科毕业于清华大学,2023年1月博士毕业于斯坦福大学,获土木与环境工程博士学位与计算机科学博士辅修学位,导师为Ram Rajagopal教授与Arun Majumdar院士。之后继续在斯坦福从事博士后研究(Human-Centered AI Postdoctoral Fellow)。工作形成了“地理空间智能模型研发->地理大数据构建->能源地理知识发现与政策启示”的研究体系,以一作/共同一作/通讯作者在Nature Energy、Joule (2篇)、Nature Communications与AAAI等国际知名期刊与会议上发表多篇论文,部分被选为封面文章。研究成果被MIT Technology Review、The Hill等媒体广泛报道,并被Google、PG&E、Breakthrough Energy等多家公司使用。现担任多个Nature子刊与Cell子刊审稿人。曾获Stanford Interdisciplinary Graduate Fellowship。
更多详情见网站:https://wangzhecheng.github.io
目前正在寻找志同道合的博士生、博士后与科研助理加入课题组。目前尚有一个2026年秋季入学的博士生名额(申请-考核制博士或硕转博),有意向者请尽快邮件联系。也欢迎计划2027年或之后读博的学生提前联系、进组科研。此外,课题组长期招收博士后(包括支持申请北大博雅博士后)与科研助理。
本人有丰富的指导学生经验,曾指导的学生或在顶尖学校实验室继续开展研究,或进入Waymo、Google X等公司工作。正在寻找志同道合的博士生、博士后与科研助理加入课题组。目前尚有一个2026年秋季入学的博士生名额(申请-考核制博士或硕转博),有意向者请尽快邮件联系。也欢迎计划2027年或之后读博的学生提前联系、进组科研。此外,课题组长期招收博士后(包括支持申请北大博雅博士后)与科研助理。
地理空间智能与信息系统:适用于遥感、街景等地理大数据的多模态基础模型;地理空间推理;基于地理空间智能的信息共享系统与可信数据空间等。
能源地理与气候韧性:利用地理空间智能、计量经济学、能源系统建模等方法,探索“能源-气候-社会”复杂联系及其时空异质性,为因地制宜制定政策提供可解释的参考依据,以加速碳中和进程并提升“基础设施-人类”耦合系统的韧性。
代表性论文
Zhecheng Wang, Michael Wara, Arun Majumdar, and Ram Rajagopal (2023). Local and Utility-Wide Cost Allocations for a More Equitable Wildfire-Resilient Distribution Grid. Nature Energy. (Featured as cover).
Zhecheng Wang, Marie-Louise Arlt, Chad Zanocco, Arun Majumdar, and Ram Rajagopal (2022). DeepSolar++: Understanding Residential Solar Adoption Trajectories with Computer Vision and Technology Diffusion Models. Joule.
Jiafan Yu*, Zhecheng Wang*, Arun Majumdar, and Ram Rajagopal (2018). DeepSolar: A Machine Learning Framework to Efficiently Construct a Solar Deployment Database in the United States. Joule. (Featured as cover). (* Equal contribution)
Zhecheng Wang, Arun Majumdar, and Ram Rajagopal (2023). Geospatial Mapping of Distribution Grid with Machine Learning and Publicly-Accessible Multi-Modal Data. Nature Communications.
Zhecheng Wang, Rajanie Prabha*, Tianyuan Huang*, Jiajun Wu, and Ram Rajagopal (2024). SkyScript: A Large and Semantically Diverse Vision-Language Dataset for Remote Sensing. AAAI Conference on Artificial Intelligence. (* Equal contribution)
其它论文
Tianyuan Huang, Chad Zanocco, Zhecheng Wang, Jackelyn Hwang, and Ram Rajagopal (2025). Neighborhood Built Environment Disparities are Amplified During Extreme Weather Recovery. Accepted in principle by Nature.
Tony Liu, Chad Zanocco, Zhecheng Wang, Tianyuan Huang, June Flora, and Ram Rajagopal (2025). Large Language Model Enabled Knowledge Discovery of Building-Level Electrification Using Permit Data. Energy and Buildings.
Rajanie Prabha, Zhecheng Wang, Chad Zanocco, June Flora, and Ram Rajagopal (2025). DeepSolar-3M: An AI-Enabled Solar PV Database Documenting 3 Million Systems Across the US. ICLR Tackling Climate Change with Machine Learning Workshop. (Best Paper Award)
Moritz Wussow, Chad Zanocco, Zhecheng Wang, Rajanie Prabha, June Flora, Dirk Neumann, Arun Majumdar, and Ram Rajagopal (2024). Exploring the Potential of Non-Residential Solar to Tackle Energy Injustice. Nature Energy.
Tianyuan Huang, Timothy Dai, Zhecheng Wang, Hesu Yoon, Hao Sheng, Andrew Ng, Ram Rajagopal, and Jackelyn Hwang (2022). Detecting Neighborhood Gentrification at Scale via Street-level Visual Data. IEEE International Conference on Big Data.
Kevin Mayer, Benjamin Rausch, Marie-Louise Arlt, Gunther Gust, Zhecheng Wang, Dirk Neumann, and Ram Rajagopal (2022). 3D-PV-Locator: Large-Scale Detection of Rooftop-Mounted Photovoltaic Systems in 3D. Applied Energy.
Tianyuan Huang*, Zhecheng Wang*, Hao Sheng*, Andrew Ng, and Ram Rajagopal (2021). M3G: Learning Urban Neighborhood Representation from Multi-Modal Multi-Graph. ACM SIGKDD Workshop on Deep Learning for Spatiotemporal Data. (* equal contribution).
Mingxiang Chen, Qichang Chen, Lei Gao, Yilin Chen, and Zhecheng Wang (2021). Predicting Geographic Information with Neural Cellular Automata. AAAI AI for Urban Mobility Workshop.
Kevin Mayer, Zhecheng Wang, Marie-Louise Arlt, Dirk Neumann, and Ram Rajagopal (2020). DeepSolar for Germany: A Deep Learning Framework for PV System Mapping from Aerial Imagery. International Conference on Smart Energy Systems and Technologies (SEST).
Zhecheng Wang*, Haoyuan Li*, and Ram Rajagopal (2020). Urban2Vec: Incorporating Street View Imagery and POIs for Multi-Modal Urban Neighborhood Embedding. AAAI Conference on Artificial Intelligence. (* Equal contribution)
Qinghu Tang*, Zhecheng Wang*, Arun Majumdar, and Ram Rajagopal (2019). Fine-Grained Distribution Grid Mapping Using Street View Imagery. NeurIPS Tackling Climate Change with Machine Learning Workshop. (* Equal contribution)
Zhengcheng Wang*, Zhecheng Wang*, Arun Majumdar, and Ram Rajagopal (2019). Identify Solar Panels in Low Resolution Satellite Imagery with Siamese Architecture and Cross-Correlation. NeurIPS Tackling Climate Change with Machine Learning Workshop. (* Equal contribution)
Sharon Zhou, Jeremy Irvin, Zhecheng Wang, Eva Zhang, Jabs Aljubran, Will Deadrick, Ram Rajagopal, and Andrew Ng (2019). DeepWind: Weakly Supervised Localization of Wind Turbines in Satellite Imagery NeurIPS Tackling Climate Change with Machine Learning Workshop.
Neel Guha, Zhecheng Wang, and Arun Majumdar (2018). Machine Learning for AC Optimal Power Flow. ICML Climate Change Workshop. (Best Paper Award Honorable Mention)