个人简历
研究方向
1)有机污染物、重金属的环境地球化学行为。研究污染物与环境介质(包括矿物、天然有机质、黑碳、生物膜等)间的相互作用及其对污染物迁移、转化/降解、生物效应的影响。
2)天然有机质的生物地球化学过程。利用现代分析技术研究地表环境中天然有机质的形态与结构变化特征,揭示其与铁、硫等重要地球元素间的耦合作用机理。
教育经历
博士 (地球化学,2001),美国德州农机大学(Texas A&M University, College Station)地质与地球物理系
硕士 (有机化学,1995),南开大学元素有机化学研究所
学士 (环境化学,1992),南开大学环境科学系
工作经历
2015.06─至今:北京大学城市与环境学院特聘教授,博士生导师
2005.12─2015.05: 南京大学环境学院教授,博士生导师
2004.06─2005.06: 博士后研究员,美国普度大学农业科学系
2002.02─2004.05: 博士后研究员,美国康涅狄格州农业研究所
学术任职
Environmental Science & Technology Letters 编委(2013─今)
Environmental Toxicology & Chemistry编委(2012─2014)
Journal of Environmental Quality副编辑(2008─2013)
荣誉与奖励
中组部“万人计划”科技创新领军人才,2017
教育部“长江特聘教授”,2014
教育部自然科学一等奖(排名第1),2014
指导的博士研究生获全国百篇优秀博士论文提名奖,2013
国家杰出青年基金,2012
国家自然科学二等奖(排名第5),2011
教育部“新世纪优秀人才”,2006
美国化学协会(ACS)环境化学分会研究生优秀论文奖,2001
主持的科研项目
1. 水环境中有机污染物界面过程研究(2013.01-2016.12),国家杰出青年基金项目。
2. 污染场地中持久性有机污染物的积累效应和健康风险研究及预测模型建立(2020.01-2023.12),国家重点研发计划项目。
3. 土壤中持久性有机有毒污染物的迁移转化规律及对地下水的影响(2007.01-2010.12),国家自然基金重点项目。
4. 土壤中抗生素界面过程对其环境健康效应的影响及作用机制(2020.01-2024.12), 国家自然基金国际合作重点项目。
5. 土壤复合污染多介质界面过程与生物影响机制 (2020.01-2024.12),国家自然基金重大项目课题。
6. 土壤有机污染物非线性微界面行为及其分子机制(2014.01-2018.12),国家973项目课题。
7. 微生物胞外聚合物的还原活性及其环境效应(2018.01-2021.12),国家自然基金面上项目。
8. 土壤中煤源颗粒对有机污染物的吸附、解吸研究(2011.01-2013.12),国家自然基金面上项目。
9. 黏土矿物中有机胺离子与多环芳烃间的阳离子-p键作用(2008.01-2010.12),国家自然基金面上项目。
10. 溶解态有机物对有机污染物在矿物表面吸附的影响(2006.01-2006.12),国家自然基金科学部主任基金。
11. 有机聚合物─黏土纳米吸附材料研究(2007.01-2009.12),教育部新世纪优秀人才支持计划。
12. 教育部留学回国人员科研启动基金(2008.09-2009.12)。
代表性学术论文
1.有机碳的环境地球化学行为(进展中):溶解性黑碳的结构特性、黑碳的吸湿特性
(1) Wang, M., Y. Chen, H. Fu, X. Qu, G. Shen, B. Li, and D. Zhu*. 2021. Combined analyses of hygroscopic properties of organic and inorganic components of three representative black carbon samples recovered from pyrolysis. Sci. Total Environ. 771: 145393. DOI: 10.1016/j.scitotenv.2021.145393
(2) Wang, M., Y. Chen, H. Fu, X. Qu, B. Li, S. Tao, and D. Zhu*. 2020. An investigation on hygroscopic properties of 15 black carbon (BC)-containing particles from different carbon sources: Roles of organic and inorganic components. Atmos. Chem. Phys. 20: 7941–7954. DOI: 10.5194/acp-20-7941-2020
(3) Zheng, X., Y. Liu, H. Fu, X. Qu, M. Yan, S. Zhang, and D. Zhu*. 2019. Comparing electron donating/accepting capacities (EDC/EAC) between crop residue-derived dissolved black carbon and standard humic substances. Sci. Total Environ. 673: 29–35. DOI: 10.1016/j.scitotenv.2019.04.022
(4) Qu, X., H. Fu, J. Mao, Y. Ran, D. Zhang, and D. Zhu*. 2016. Chemical and structural properties of dissolved black carbon released from biochars. Carbon 96: 759–767. DOI: 10.1016/j.carbon.2015.09.106
2.污染物转化:微生物胞外聚合物、黑碳、矿物等介导的糖还原、活性硫生成和分子活化机制
(1) Li, L., X. Wang, H. Fu, X. Qu, J. Chen, S. Tao, and D. Zhu*. 2020. Dissolved black carbon facilitates photoreduction of Hg(II) to Hg(0) and reduces mercury uptake by lettuce (Lactuca sativa L.). Environ. Sci. Technol. 54: 11137–11145. DOI: 10.1021/acs.est.0c01132
(2) Wei, C., S. Yin, and D. Zhu*. 2020. Mechanisms for sulfide-induced nitrobenzene reduction mediated by a variety of different carbonaceous materials: Graphitized carbon-facilitated electron transfer versus quinone-facilitated formation of reactive sulfur species. J. Environ. Qual. 49: 1564–1574. DOI: 10.1002/jeq2.20146
(3) Yin, S., C. Wei, and D. Zhu*. 2020. Surface quinone-induced formation of aqueous reactive sulfur species controls pine wood biochar-mediated reductive dechlorination of hexachloroethane by sulfide. Environ. Sci.: Proc. & Impacts 22: 1898–1907. DOI: 10.1039/d0em00307g
(4) Wei, C., S. Yin, H. Fu, X. Qu, W. A. Mitch, and D. Zhu*. 2020. Sulfide-induced reduction of nitrobenzene mediated by different size fractions of rice straw-derived black carbon: A key role played by reactive polysulfide species. Sci. Total Environ. 748: 141365. DOI: 10.1016/j.scitotenv.2020.141365
(5) Zhou, X., F. Kang, X. Qu, H. Fu, P. J. J. Alvarez, S. Tao, and D. Zhu*. 2020. Role of extracellular polymeric substances in microbial reduction of arsenate to arsenite by Escherichia coli and Bacillus subtilis. Environ. Sci. Technol. 54: 6185–6193. DOI: 10.1021/acs.est.0c01186
(6) Zhou, X., F. Kang, X. Qu, H. Fu, J. Liu, P. J. J. Alvarez, and D. Zhu*. 2020. Probing extracellular reduction mechanisms of Bacillus subtilis and Escherichia coli with nitroaromatic compounds. Sci. Total Environ. 724: 138291. DOI: 10.1016/j.scitotenv.2020.138291
(7) Xu, L., H. Li, W. A. Mitch, S. Tao, and D. Zhu*. 2019. Enhanced phototransformation of tetracycline at smectite clay surfaces under simulated sunlight via a Lewis-base catalyzed alkalization mechanism. Environ. Sci. Technol. 53: 710–718. DOI: 10.1021/acs.est.8b06068
(8) Kang, F., X. Qu, P. J. Alvarez, and D. Zhu*. 2017. Extracellular saccharide-mediated reduction of Au3+ to gold nanoparticles: New insights for heavy metals biomineralization on microbial surfaces. Environ. Sci. Technol. 51: 2776–2785. DOI: 10.1021/acs.est.6b05930
(9) Kang, F., P. J. Alvarez, and D. Zhu*. 2014. Microbial extracellular polymeric substances reduce Ag+ to silver nanoparticles and antagonize bactericidal activity. Environ. Sci. Technol. 48: 316–322. DOI: 10.1021/es403796x
(10) Fu, H., and D. Zhu*. 2013. Graphene oxide-facilitated reduction of nitrobenzene in sulfide-containing aqueous solutions. Environ. Sci. Technol. 47: 4204–4210. DOI: 10.1021/es304872k
3.有机污染物吸附:矿物、黑碳、溶解性有机质等引起的阳离子-p键作用、p-p电子交互作用和分子尺寸效应
(1) Fu, H., C. Wei, X. Qu, H. Li, and D. Zhu*. 2018. Strong binding of apolar hydrophobic organic contaminants by dissolved black carbon released from biochar: A mechanism of pseudomicelle partition and environmental implications. Environ. Pollut. 232: 402–410. DOI: 10.1016/j.envpol.2017.09.053
(2) Wang, B., W. Zhang, H. Li, H. Fu, X. Qu, and D. Zhu*. 2017. Micropore clogging by leachable pyrogenic organic carbon: A new perspective on sorption irreversibility and kinetics of hydrophobic organic contaminants to black carbon. Environ. Pollut. 220: 1349–1358. DOI: 10.1016/j.envpol.2016.10.100
(3) Ji, L., Y. Wan, S. Zheng, and D. Zhu*. 2011. Adsorption of tetracycline and sulfamethoxazole on crop residue-derived ashes: Implication for the relative importance of black carbon to soil sorption. Environ. Sci. Technol. 45: 5580–5586. DOI: 10.1021/es200483b
(4) Qu, X., Y. Zhang, H. Li, S. Zheng, and D. Zhu*. 2011. Probing the specific sorption sites on montmorillonite using nitroaromatic compounds and hexafluorobenzene. Environ. Sci. Technol. 45: 2209–2216. DOI: 10.1021/es104182a
(5) Ji, L., W. Chen, L. Duan, and D. Zhu*. 2009. Mechanisms for strong adsorption of tetracycline to carbon nanotubes: A comparative study using activated carbon and graphite as adsorbents. Environ. Sci. Technol. 43: 2322–2327. DOI: 10.1021/es803268b
(6) Qu, X., P. Liu, and D. Zhu*. 2008. Enhanced sorption of PAHs to tetra-alkyl ammonium modified smectites via cation-p interactions. Environ. Sci. Technol. 42: 1109–1116. DOI: 10.1021/es071613f
(7) Chen, W., L. Duan, and D. Zhu*. 2007. Adsorption of polar and nonpolar organic chemicals to carbon nanotubes. Environ. Sci. Technol. 41: 8295–8300. DOI: 10.1021/es071230h
(8) Xiao, L., X. Qu, and D. Zhu*. 2007. Biosorption of nonpolar hydrophobic organic compounds to Escherichia coli facilitated by metal and proton surface binding. Environ. Sci. Technol. 41: 2750–2755. DOI: 10.1021/es062343o
(9) Chen, J., D. Zhu*, and C. Sun. 2007. Effect of heavy metals on the sorption of hydrophobic organic compounds to wood charcoal. Environ. Sci. Technol. 41: 2536–2541. DOI: 10.1021/es062113+
(10) Zhu, D.*, B. E. Herbert, M. A. Schlautman, E. R. Carraway, and J. Hur. 2004. Cation-p bonding: A new perspective on the sorption of polycyclic aromatic hydrocarbons to mineral surfaces. J. Environ. Qual. 33: 1322–1330. URL http://www.scopus.com/inward/record.url?eid=2-s2.0-0347613661&partnerID=MN8TOARS