in Urban
hina

15	Materials. Thirty hormones as shown in Figure S1 were targeted in this study.
16	19-nor-4-androstene-3,17-diol (NAD), trenbolone (TBL), nandrolone (NDL), androstenedione
17	(ADD), norethindrone (NTD), 17α-hydroxyprogesterone (17α-HPT), testosterone (TTR),
18	21α-hydroxyprogesterone (21α-HPT), norgestrel (NGT),
19	17α , 20β -dihydroxy-4-progegnen-3-one (DPO), methyl testosterone (MTTR), epiandrosterone
20	(EADR), stanozolol (SZL), 6α-methylhydroxyprogesterone (MHPT), megestrol acetate (MTA)
21	medroxyprogesterone acetate (MPA), progesterone (PGT), androsterone (ADR), 17α-estradiol
22	(aE2), cortisol (CRL), cortisone (CRN), prednisone (PRE), prednisolone (PREL),
23	dexamethasone (DEX), 6α -methylprednisolone (MPREL), aldosterone (ADT), ${}^{13}C_2$ -NTD,
24	$^{13}C_2$ -TTR, NGT-d ₆ and PGT-d ₉ were purchased from Sigma (St Louis, MO, USA).
25	Ethinylestradiol (EE2), 17β-estradiol (E2), estrone (E1), diethylstilbestrol (DES), E2-d ₃ , E1-d ₂ ,
26	and EE2-d ₄ were purchased as powders from Wako (Tokyo, Japan). CRL-d ₂ was obtained from
27	C/D/N Isotopes (Montreal, Canada). Formic and acetic acids were analytical grade (Beijing
28	Chemicals, China). Methanol, acetonitrile, ethyl acetate, hexane, and dichloromethane were all
29	HPLC grade purchased from Fisher Chemical Co. (Beijing, China). HPLC-grade water was
30	prepared using a Milli-Q RC apparatus (Millipore, Bedford, MA, USA).

Sample Preparation. In our previous studies, we have developed separate analytical methods to detect estrogens (1), glucocorticoids (2), androgens, and progestogens (3) in various water matrices. In this study, based on these methods previously described, we further developed the present method to allow the measurement of all five classes of steroid hormones in one water sample. In this method, 200 mL of effluents spiked with 10 ng of E1-d₄ and 2 ng of other surrogate standards and 2 L of river water spiked with 50 ng of E1-d₄ and 10 ng of other

surrogate standards were respectively extracted through an Oasis HLB cartridge (6 mL, 60 mg 37 or 500 mg, Waters, USA), which was previously conditioned with 6 mL ethyl acetate, 6 mL 38 acetonitrile and 12 mL distilled water at a flow rate of 5-10 mL/min. The cartridge was washed 39 40 with 10 mL of distilled water, and then was dried under a flow of nitrogen. 15 mL of ethyl acetate and 6 mL of ethyl acetate/acetonitrile (1:1, v/v) were used to elute the analytes. For the 41 effluent samples, daily 24-hour composites were extracted, and then the 7-day elutants were 42 pooled as composite samples for a complete week. The extracts were dried and redissolved in 43 0.2 mL of ethyl acetate and 1.8 mL of hexane. The mixed solutions were applied to silica 44 cartridges (3 mL, 500 mg, Waters), which had been preconditioned with 4 mL water-saturated 45 ethyl acetate and 4 mL hexane/ethyl acetate (90:10, v/v). After the cartridges were rinsed with 3 46 47 mL of hexane/ethyl acetate (90:10, v/v), the fraction (F1) containing nine androgens, nine progestogens, and five estrogens were eluted with 3 mL of hexane/ethyl acetate (38:62, v/v), 48 49 and the fraction (F2) containing six glucocorticoids and one mineralocorticoid were subsequently eluted with 3 mL of water-saturated ethyl acetate. For androgens, progestogens 50 and adrenal steroids, F1 and F2 eluates were dried and reconstituted respectively with 0.5 mL of 51 methanol for LC-ESI-MS/MS analysis. For estrogens, 0.2 mL of the methanol reconstituted 52 solution of F1 was dried and redissolved with 1 mL hexane-methylene chloride (DCM) (1:1, 53 v/v), and then passed through the preconditioned Florisil cartridges (6 mL, 1 g, Waters). 10 mL 54 55 of a mixture of hexane–DCM (1:1, v/v) were discarded and the fraction containing all estrogens was eluted with 6 mL of acetone-DCM (1:9, v/v). The solution was evaporated to dryness 56 under a gentle stream of nitrogen and reconstituted with 0.2 mL of acetonitrile for 57 LC-ESI-MS/MS analysis. 58

59 LC-ESI-MS/MS Analysis. The LC apparatus was an Acquity Ultra Performance LC (Waters). All analytes were separated using a Waters Acquity UPLC® BEH C18 column (100 × 2.1 mm, 60 1.7 µm particle size) (USA). The column was maintained at 40°C at a flow rate of 0.3 mL/min 61 62 and the injection volume was 5 µL. Methanol and water containing 0.1% formic acid were used for analyzing androgens and progestogens. Gradient conditions were initiated with 60% 63 methanol followed by a linear increase to 65% methanol in 2.5 min. After increased to 70% in 64 65 3.5 min, methanol was increased sharply to 100% in 0.1 min and was held for 1 min. For separation of adrenal steroids, methanol and water containing 0.1% acetic acid were used as 66 mobile phases. 35% methanol was increased linearly to 55% in 5 min, to 80% methanol in the 67 68 next 0.5 min, and to 100% in the following 2.5 min (held for 1 min). For separation of estrogens, 69 acetonitrile and 0.1% acetic acid in water were chosen as mobile phases. The gradient was increased linearly from an initial 20 to 80% acetonitrile in 4.5 min, and then to 100% 70 71 acetonitrile in 0.1 min (held for 1 min). In our previous paper (16), we reported that methanol, combined with a phenyl column for good chromatographic separation, could enhance the signal 72 intensities of E1, BE2 and EE2 compared with acetonitrile as organic modifier in LC-MS 73 system. However, in 2006, only C18 columns with this small particle size could be 74 commercially obtained for this improved LC system. Thus, for better separating target 75 estrogens on the C 18 column, acetonitrile was used as organic modifier in this study, and this 76 77 condition can separate all estrogens even for $\alpha E2$ and $\beta E2$.

Mass spectrometry was performed using a Premier XE tandem quadrupole mass spectrometer (Waters) equipped with a Z-Spray ionization (ESI) source. ESI-MS/MS detections were performed in the negative ion mode for glucocorticoid and mineralocorticoid

S4

81	steroids and in the positive ion mode for the other steroids. In the analysis of androgens and
82	progestogens, [M+H] ⁺ was selected as the precursor ion. For glucocorticoids and
83	mineralocorticoids, [M+acetate] ⁻ , the adducts with CH ₃ COOH were selected as the precursor
84	ions. Concerning estrogens, the precursor ions for $\beta E2$, $\alpha E2$ and $EE2$ were $[M+H-H_2O]^+$, and
85	those for E1 and DES were their protonation ions ([M+H] ⁺). The two most abundant
86	multi-selected reaction monitoring (MRM) transitions, cone voltages and collision energies
87	were optimized for each steroid by infusing standard solutions in the mass spectrometer. Of the
88	two MRM transitions, the first transition was selected for quantitation, and another was used for
89	confirmation. For the surrogate standards, their most intense product ions were monitored, and
90	their compensating target compounds following the corresponding surrogate standards were
91	shown in Table S1 (Supporting Information). Common MS parameters were as follows:
92	capillary voltage, 2.5 kV; source temperature, 120; desolvation temperature, 450; source gas
93	flow, 50 L/h; and desolvation gas flow, 900 L/h.

94 **References**

- (1) Hu, J. Y.; Zhang, H. F.; Chang, H. Improved method for analyzing estrogens in water by
 liquid chromatography-electrospray mass spectrometry. *J. Chromatogr. A.* 2005, *1070 (1-2)*,
 221-224.
- (2) Chang, H.; Hu, J. Y.; Shao, B. Occurrence of natural and synthetic glucocorticoids in
 sewage treatment plants and receiving river waters. *Environ. Sci. Technol.* 2007, *41* (10),
 3462-3468.
- (3) Chang, H.; Wu, S. M.; Hu, J. Y.; Asami, M.; Kunikane, S. Trace analysis of androgens and
 progestogens in environmental waters by ultra-performance liquid
 chromatography-electrospray tandem mass. J. Chromatogr. A 2008, 1195 (1-2), 44-51.

104 **FIGURE S1**. Structure of Target Five Classes of Steroid Hormones

105 N: natural steroid; S: synthetic steroid

FIGURE S2. LC-ESI-MS/MS MRM chromatograms of β E2 analyzed in negative and positive

123	TABLE S1	Multi-selected	Reaction N	Monitoring	(MRM)	Conditions	of the 7	Farget Steroid
				0	· /			U

124 Hormones

Steroid	MRM transition	Cone voltage	Collision energy	Retain time
Estrogen		(*)		(11111)
$\beta E2-d_3$	258 >159	33	20	3.52
ßE2	255 > 159	33	20	3 53
pEz	255 > 133	55	20	5.55
aE2	255 >159	28	15	3.70
EE2 4	255 >133	20	15	2 77
$EE2-a_4$	283 > 133 270 > 133	30	21	5.77
EE2	279 > 159 279 > 159	30	21	3.78
$E1-d_2$	273 >159	31	19	3.92
- F1	271 >159	31	19	3 80
EI	271 >197	51	17	5.09
DES	269 > 135	20	14	4.05
Androgon and progestage	269 > 107		20	
¹³ C ₂ -ethynyl-NTD	301 > 109	31	26	2.81
	271 > 199	31	20	2.01
TBL	271 > 253	37	19	2.35
ΝΔ	273 > 109	33	24	2 30
MAD	273 > 197	55	18	2.37
NDL	275 > 109	35	21	2.78
	2/5 > 25/ 287 > 07		15	
ADD	287 > 97 287 > 109	33	22	2.83
	299 > 231	21	20	2.02
NTD	299 > 109	31	26	2.83
$^{13}C_2$ -TTR	291 > 99	33	20	3.34
17-HPT	331 > 97	33	26	3.13
1, 111 1	331 > 109	55	24	5.115
TTR	289 > 97	33	22	3.35
	289 > 109		22	
21-HPT	331 > 109	33	20	3.60
NGT-d ₆	319 > 114	33	24	3.82
NGT	313 > 245	31	16	3.83
1101	313 > 109	51	26	5.05
DPO	333 > 97	33	24	3.95
	333 > 109 303 \ 07		3U 23	
MTTR	303 > 109	33	23	3.98
	291 > 255	25	12	4.20
EADK	291 > 273	25	10	4.32
PGT-d ₉	324 > 100	33	22	5.47
SZL	329 > 81	47	40	4.76
	329 > 95		40	
MHPT	545 > 123 245 > 07	39	24 24	4.81
	385 > 767		24 20	
MTA	385 > 325	25	14	4.96
DCT	315 > 97	20	24	5 40
rui	315 > 109	32	24	5.49
MPA	387 > 327	29	14	5.33
	387 > 285	_/	18	2.35
ADR	291 > 255 201 > 272	20	12	6.02
Mineralocorticoid (aldoct	271 × 273 erone) and glucocorti	coid	10	
CRL-d ₂	423 > 333	18	22	5.45
ADT	419 > 331	16	18	4.33

	419 > 359		12	
DDE	417 > 327	17	14	173
FKL	417 > 357	17	10	4.75
CRN	419 > 329	25	15	4 91
CINI	419 > 359	23	10	4.71
PREI	419 > 329	25	15	5.45
TKLL	419 > 359	23	11	5.75
CRL	421 > 331	19	18	5 4 5
CILL	421 > 361	17	12	5.15
DEX	451 > 361	27	16	6 40
DEM	451 > 391	27	11	0.10
MPREL	433 > 343	23	12	6 47
	433 > 373	25	16	0.17

129 **TABLE S2**. Recoveries (%) and Method Detection Limits (MDLs, ng/L) in Various Water

130 Matrices

	Recovery	^{<i>a</i>} ±RSD	M	DL
compound	Sample from discharging site ^b 0.5L	River water ^c 2L	Sample from discharging site	River water
Estrogen				
βE2	78±6.3	80±7.9	0.25	0.10
αΕ2	82±5.7	81±5.3	0.04	0.02
EE2	85±7.3	83±8.5	0.30	0.10
E1	75±4.2	82±6.6	0.60	0.20
DES	81±7.9	86±3.6	0.60	0.25
Androgen and progestogen				
TBL	78±6.7	88±3.4	0.50	0.15
NAD	88±4.6	87±8.4	0.80	0.20
NDL	83±9.8	89±5.5	2.4	0.60
ADD	80±9.1	90±8.3	0.6	0.63
NTD	88±7.4	86±3.8	1.2	0.30
17-HPT	86±8.1	83±7.6	0.30	0.10
TTR	89±4.4	84±5.8	0.20	0.03
21- HPT	85±7.2	91±4.6	0.30	0.10
NGT	80±6.3	83±7.8	0.40	0.08
DPO	81±5.7	85±4.9	1.2	0.50
MTTR	83±7.3	81±8.6	0.80	0.20
EADR	84±5.2	86±7.5	20	12
SZL	89±9.9	91±7.9	0.24	0.06
MHPT	87±6.8	83±7.7	0.20	0.05
MTA	87±3.8	80±4.8	0.12	0.03
MPA	89±5.4	83±4.4	0.08	0.02
PGT	91±7.2	83±12	0.30	0.13
ADR	88±5.8	82±6.7	10	5.0
Mineralocorticoid and Glucoc	corticoid			
ADT	84±6.9	75±3.2	0.5	0.25
PRE	94±5.4	80±6.5	0.08	0.04
CRN	84±11	78±7.9	0.04	0.02
PREL	86±2.2	81±6.5	0.05	0.02
CRL	83±5.7	84±4.8	0.10	0.04
DEX	87±4.3	84±9.4	0.02	0.008
MPREL	90±2.8	84±9.7	0.04	0.02

^a Mean values from three determinations by external standard quantification procedures (n=3).

^b Spiked concentration in the range of 5.0-25 ng/L for estrogens, 5.0-200 ng/L for most of androgens and

133 progestogens (1.5 μg/L for ADD, ADR and EADR), 5.0-600 ng/L for mineralocorticoids and glucocorticoids.

^{*c*} Spiked concentration at 1-5 ng/L.

	Signal Suppres	sion
compound	Sample from discharging site ^{<i>a</i>}	River water ^b
Estrogen		
βΕ2	14	6.0
αE2	13	5.0
EE2	11	4.0
E1	8.0	7.0
DES	7.0	4.0
Androgen and pr	rogestogen	
TBL	6.0	6.0
NAD	4.0	6.0
NDL	8.0	4.0
ADD	10	8.0
NTD	5.0	5.0
17-HPT	6.0	6.0
TTR	10	6.0
21- HPT	11	4.0
NGT	8.0	3.0
DPO	7.0	4.0
MTTR	10	5.0
EADR	10	6.0
SZL	11	4.0
MHPT	8.0	8.0
MTA	7.0	5.0
MPA	11	4.0
PGT	8.0	3.0
ADR	7.0	4.0
Mineralocorticoi	d and Glucocorticoid	
ADT	8.0	6.0
PRE	6.0	3.0
CRN	5.0	3.0
PREL	8.0	4.0
CRL	7.0	4.0
DEX	9.0	5.0
MPREL	6.0	3.0

135 **TABLE S3.** Signal Suppression (%) of Target Steroid Hormones in Various Water Matrices ^a

^a Spiked concentration in the range of 5.0-25 ng/L for estrogens, 5.0-200 ng/L for most of androgens and

137 progestogens (1.5 μ g/L for ADD, ADR and EADR), 5.0-600 ng/L for mineralocorticoids and glucocorticoids.

138 ^b Spiked concentration at 1-5 ng/L.

139

142 River, Discharged and STP Composite Effluent Samples in July and August 2006^a SZL Sampling site E1 βE2 αE2 ADD NAD ADR EADR TTR Q1 3.1 1.3 0.28 37 ND 330 110 8.6 ND DQE 2.4 0.04 ND 0.13 0.98 ND ND ND ND 6.9 0.93 0.87 ND Q2 43 ND ND ND ND Q3 ND 4.6 0.48 0.61 20 ND ND ND ND Q4 3.3 0.82 0.56 34 ND ND ND ND ND Q5 2.2 0.81 34 ND ND ND ND 0.43 ND Q6 1.6 1.6 0.53 18 ND ND ND ND ND DQ1 1.5 0.36 0.34 6.0 ND ND ND 0.65 ND DQ2 1.3 0.42 0.22 6.7 ND 30 ND ND ND DQ3 0.80 0.16 0.05 1.9 ND ND ND 0.23 ND Q7 0.69 0.06 ND 1.0 8.3 ND ND ND ND 6.5 0.20 ND **B**1 0.31 25 130 42 ND ND BL1 4.0 0.45 0.34 12 ND 16 13 1.0 ND DJE 0.25 0.10 0.08 2.4 ND ND ND ND 0.53 BL2 3.4 0.26 0.09 79 1.2 120 48 4.8 ND B2 3.2 0.74 ND 49 ND 16 17 1.5 ND 22 DB1 2.1 0.51 240 ND 500 260 ND 14 **B**3 3.2 0.40 0.17 7.5 ND ND 13 0.77 ND 0.08 BB1 1.4 0.83 17 ND ND ND ND ND DBE 0.52 0.11 0.05 4.1 ND ND ND 0.39 ND BB2 8.0 1.2 0.58 37 ND 80 ND ND ND DBB1 7.0 1.1 0.36 370 ND 170 270 15 ND DBB2 1.2 1.5 ND 7.9 ND ND 20 ND ND DBB3 2.5 0.48 0.15 6.1 ND ND 25 1.2 ND DBB4 ND ND 2.3 ND ND ND 0.28 ND ND DBB5 3.1 0.53 0.15 6.0 ND ND ND 0.57 ND BB3 1.0 0.14 5.4 ND 0.70 ND ND ND ND B4 1.9 0.17 0.17 4.4 ND ND ND ND ND B5 0.99 0.22 0.19 4.0 ND ND ND ND ND T1 0.73 0.81 0.18 4.6 ND ND ND ND ND T2 3.6 0.18 0.13 3.9 ND 5.2 ND 0.53 ND T3 3.4 0.27 0.15 4.4 ND 6.7 ND ND ND T4 2.0 0.19 0.04 2.4 ND ND ND ND ND DTE 0.93 0.12 0.04 4.2 ND ND ND 0.61 ND T5 5.1 0.50 0.17 8.3 ND ND ND ND ND T6 0.27 0.06 4.7 1.8 ND ND ND ND ND DT1 4.8 1.5 0.39 86 ND 680 240 30 ND DT2 1.4 0.35 ND 4.2 ND ND ND ND ND 0.24 T7 4.3 0.53 17 ND 33 12 1.3 ND DT3 14 2.3 0.30 160 ND 1300 410 17 0.29 DT4 6.2 1.5 0.45 88 ND 640 210 15 ND

141 **Table S4.** Concentrations (ng/L) of Estrogens and Androgens in All Water Samples Including

Т8	5.1	0.98	0.21	67	ND	53	59	2.6	ND
W1	4.1	1.6	0.58	99	ND	250	ND	ND	ND
W2	0.90	0.47	0.24	28	ND	390	ND	ND	ND
W3	0.69	0.17	0.04	2.9	ND	ND	ND	0.44	ND
W4	0.93	0.18	0.06	2.6	ND	5.2	ND	0.38	ND
W5	3.2	0.33	ND	9.3	ND	ND	ND	ND	ND
W6	0.98	0.33	0.11	27	ND	ND	ND	ND	ND
WT1	5.3	0.56	0.91	75	ND	ND	ND	ND	ND
W7	1.0	0.13	0.09	19	ND	ND	ND	ND	ND
W8	2.0	0.44	0.08	2.2	ND	ND	ND	0.23	ND
W9	1.4	0.37	0.11	1.7	ND	5.1	ND	0.22	ND
W10	1.8	0.27	0.11	3.0	ND	5.3	ND	0.19	ND
WT2	0.40	0.15	ND	5.6	ND	17	12	0.88	ND
W11	2.5	0.26	0.09	9.2	ND	17	ND	0.31	ND
W12	1.6	0.24	0.06	3.5	ND	5.5	ND	0.23	ND
W13	3.4	0.25	0.10	8.3	ND	6.1	ND	0.49	ND
W14	1.1	0.14	0.15	12	ND	ND	ND	ND	ND
WT3	0.87	ND	ND	3.2	ND	ND	ND	0.19	ND
W15	1.1	0.11	0.14	12	ND	ND	ND	ND	ND
W16	2.1	0.21	0.14	13	ND	ND	ND	0.33	ND
W17	6.3	0.28	0.63	40	ND	17	ND	ND	ND

^aAverage of duplicate injections. ND: under the method detection limit.

Sampling site	PGT	17-HPT	21-HPT	MHPT	DPO	MTA	NTD	NGT	MPA	CRL	CRN	DEX	MPREL	PREL	PRE
Q1	7.7	0.40	1.1	ND	0.72	0.84	ND	ND	1.9	18	22	1.2	ND	1.2	1.3
DQE	1.1	ND	ND	ND	ND	ND	ND	ND	ND	0.57	0.26	ND	ND	0.72	ND
Q2	6.8	ND	ND	ND	ND	25	ND	ND	18	9.4	7.8	8.0	ND	0.72	2.4
Q3	4.0	ND	ND	ND	ND	10	ND	ND	7.5	4.3	2.3	3.8	ND	0.46	0.82
Q4	4.8	ND	ND	ND	ND	15	ND	ND	13	3.1	0.71	2.4	ND	0.29	ND
Q5	4.8	ND	ND	ND	ND	11	ND	ND	16	2.8	1.7	3.2	ND	0.59	ND
Q6	3.5	ND	ND	ND	ND	7.3	ND	ND	8.5	3.7	1.0	2.3	ND	0.44	0.91
DQ1	0.59	ND	ND	0.53	ND	0.55	ND	ND	0.81	0.33	0.33	0.20	ND	0.31	ND
DQ2	2.7	ND	ND	ND	ND	ND	ND	ND	3.0	0.31	0.50	0.50	ND	0.41	ND
DQ3	ND	ND	ND	0.21	0.51	ND	ND	ND	ND	0.13	0.18	0.08	ND	0.31	ND
Q7	1.1	ND	ND	1.2	ND	0.87	ND	ND	2.0	2.0	2.2	0.07	ND	0.30	ND
B1	3.8	ND	ND	ND	1.2	2.9	ND	ND	1.2	1.4	1.6	1.6	0.20	0.54	ND
BL1	2.5	ND	1.7	ND	1.5	ND	ND	ND	ND	5.9	16	0.77	ND	0.71	0.71
DJE	0.48	ND	0.44	0.37	0.50	0.13	ND	ND	ND	0.21	0.26	ND	ND	0.60	ND
BL2	26	1.1	3.4	0.58	0.93	1.0	ND	ND	0.24	20	29	0.95	0.41	1.1	1.0
B2	2.5	ND	3.0	1.9	2.7	1.7	ND	ND	0.45	13	24	1.7	ND	0.88	0.83
DB1	ND	25	1.5	0.97	4.0	ND	ND	ND	ND	31	57	2.7	ND	3.8	2.4
B3	1.3	ND	2.1	1.4	0.94	0.44	ND	ND	0.42	8.1	16	1.1	ND	0.92	0.68
BB1	1.5	ND	ND	ND	ND	1.5	ND	ND	6.9	0.13	0.40	1.3	ND	0.53	ND
DBE	1.4	ND	0.53	1.3	0.52	0.28	ND	ND	0.60	0.24	0.88	0.05	ND	0.51	ND
BB2	6.5	ND	ND	ND	ND	9.5	ND	ND	7.9	3.8	1.8	5.1	ND	0.46	0.93
DBB1	35	1.4	170	ND	3.2	ND	ND	ND	ND	100	250	5.2	ND	17	18
DBB2	2.4	ND	ND	ND	ND	ND	16	ND	ND	8.8	12	0.37	ND	1.1	1.3
DBB3	2.0	0.43	4.9	ND	1.3	ND	4.7	ND	ND	26	69	1.6	ND	2.3	3.0
DBB4	0.70	ND	ND	ND	ND	ND	ND	ND	ND	0.35	0.18	ND	ND	0.40	ND

TABLE S5. Concentrations (ng/L) of Progestogens and Glucocorticoids in All Water Samples Including River Samples, Samplies from
 Discharged Sites and STP Composite Effluents in July and August 2006^a

DBB5	0.45	ND	ND	ND	ND	ND	ND	ND	ND	0.69	1.3	0.13	ND	0.40	0.13
BB3	0.59	ND	ND	0.53	ND	0.83	ND	ND	0.91	0.26	0.13	0.19	ND	0.27	ND
B4	0.71	ND	ND	1.7	ND	0.82	ND	ND	0.71	0.82	1.3	0.48	ND	0.32	0.14
B5	0.37	ND	ND	0.57	ND	0.56	ND	ND	0.96	0.58	0.51	0.47	ND	0.46	ND
T1	ND	ND	ND	1.1	ND	4.9	ND	ND	3.0	0.28	ND	0.30	ND	0.49	ND
T2	0.25	ND	ND	ND	ND	0.37	ND	ND	0.45	0.11	0.21	0.12	ND	0.34	0.08
Т3	0.40	ND	ND	ND	ND	0.45	ND	ND	0.60	0.15	0.32	0.14	ND	0.25	0.05
T4	ND	ND	ND	ND	ND	ND	ND	ND	0.36	0.11	0.20	0.09	ND	0.31	0.09
DTE	1.2	ND	0.33	0.41	0.50	ND	ND	ND	ND	0.19	0.31	ND	ND	0.47	ND
T5	0.54	ND	ND	ND	ND	1.9	ND	ND	1.2	0.16	0.54	0.15	ND	0.36	0.12
Т6	0.58	ND	ND	ND	ND	ND	ND	ND	0.44	0.59	0.80	0.27	ND	0.36	0.24
DT1	25	1.6	4.0	ND	1.7	2.0	1.6	ND	5.6	46	50	4.0	ND	2.1	4.8
DT2	0.86	ND	0.80	ND	ND	0.12	ND	ND	0.16	2.4	4.1	0.28	ND	0.42	0.38
T7	1.6	ND	ND	ND	1.1	1.1	ND	ND	1.7	1.6	2.2	1.3	ND	0.37	0.44
DT3	38	2.2	4.0	ND	1.5	0.49	5.4	6.2	17	19	26	1.8	ND	0.80	2.1
DT4	18	1.4	3.6	ND	1.2	0.38	1.7	ND	2.3	48	66	3.0	ND	2.0	7.0
Т8	8.9	1.1	3.8	ND	2.0	0.23	ND	ND	0.04	12	23	1.2	ND	0.99	1.4
W1	ND	ND	ND	ND	ND	ND	ND	ND	12	0.63	ND	3.4	ND	1.8	ND
W2	1.7	ND	ND	ND	ND	ND	ND	ND	ND	0.20	0.38	0.07	ND	0.37	ND
W3	0.40	ND	ND	ND	ND	ND	ND	ND	ND	0.35	0.78	0.06	ND	0.29	ND
W4	0.32	ND	ND	ND	ND	ND	ND	ND	0.15	0.29	0.14	0.31	ND	0.32	0.25
W5	1.2	ND	ND	ND	ND	ND	ND	ND	0.47	0.88	1.1	0.43	ND	0.45	ND
W6	1.4	ND	ND	1.6	ND	ND	ND	ND	0.85	0.30	0.37	0.42	ND	0.33	ND
WT1	5.9	ND	ND	ND	ND	ND	ND	ND	3.4	3.2	2.6	2.5	ND	0.50	0.63
W7	0.63	ND	ND	0.42	ND	ND	ND	ND	0.71	0.45	0.36	0.45	ND	0.40	ND
W8	0.19	ND	ND	ND	ND	ND	ND	ND	0.11	0.46	0.61	0.30	ND	0.34	0.08
W9	0.16	ND	ND	ND	ND	ND	ND	ND	0.08	0.30	0.05	0.51	ND	0.32	0.04
W10	0.18	ND	ND	0.09	ND	ND	ND	ND	0.17	0.26	0.46	0.64	ND	0.36	ND

WT2	0.80	ND	ND	ND	ND	ND	ND	ND	ND	0.62	0.50	0.10	ND	0.28	ND
W11	0.63	ND	ND	ND	ND	ND	ND	ND	0.19	0.61	0.70	0.22	ND	0.33	0.07
W12	0.26	ND	ND	0.06	ND	ND	ND	ND	0.15	0.28	0.63	0.25	ND	0.32	0.04
W13	0.97	ND	0.29	ND	0.50	ND	ND	ND	0.12	1.1	1.5	0.35	ND	0.37	0.10
W14	0.19	ND	ND	0.52	ND	ND	ND	ND	0.53	0.16	0.07	0.24	ND	0.35	ND
WT3	0.18	ND	ND	ND	ND	ND	ND	ND	0.26	0.15	0.24	0.05	ND	0.35	ND
W15	0.52	ND	ND	ND	ND	ND	ND	ND	1.2	0.77	0.39	0.41	ND	0.42	ND
W16	0.38	ND	ND	0.33	0.54	0.40	ND	ND	0.48	0.49	0.60	0.51	ND	0.30	ND
W17	1.9	ND	ND	2.1	ND	12	ND	ND	34	2.2	0.62	5.1	ND	0.62	ND

^aAverage of duplicate injections. ND: under the method detection limit.